1887

Abstract

Purpose. Haemophilus influenzae is a commensal organism found in the upper respiratory tract of humans. When H. influenzae becomes a pathogen, these bacteria can move out of their commensal niche and cause multiple respiratory tract diseases such as otitis media, sinusitis, conjunctivitis and bronchitis in children, and chronic obstructive pulmonary disease in adults. However, H. influenzae is currently considered a non-flagellate bacterium.

Methodology and Results. In this study, 90 clinical isolates of H. influenzae strains (typeable and non-typeable) showed different degrees of the swarm-motility phenotype in vitro.

Keys findings. One of these strains, NTHi BUAP96, showed the highest motility rate and its flagella were revealed using transmission electron microscopy and Ryu staining. Moreover, the flagellar genes fliC and flgH exhibited high homology with those of Actinobacillus pleuropneumoniae, Escherichia coli and Shigella flexneri. Furthermore, Western blot analysis, using anti-flagellin heterologous antibodies from E. coli, demonstrated cross-reaction with a protein present in NTHi BUAP96.

Conclusion. This study provides, for the first time, information on flagellar expression in H. influenzae, representing an important finding related to its evolution and pathogenic potential.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000471
2017-05-18
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/5/592.html?itemId=/content/journal/jmm/10.1099/jmm.0.000471&mimeType=html&fmt=ahah

References

  1. Harabuchi Y, Faden H, Yamanaka N, Duffy L, Wolf J et al. Nasopharyngeal colonization with nontypeable Haemophilus influenzae and recurrent otitis media. Tonawanda/Williamsville pediatrics. J Infect Dis 1994;170:862–866[PubMed][CrossRef]
    [Google Scholar]
  2. St Geme JW. The pathogenesis of nontypable Haemophilus influenzae otitis media. Vaccine 2000;19:S41–S50 [CrossRef][PubMed]
    [Google Scholar]
  3. Eldika N, Sethi S. Role of nontypeable Haemophilus influenzae in exacerbations and progression of chronic obstructive pulmonary disease. Curr Opin Pulm Med 2006;12:118–124 [CrossRef][PubMed]
    [Google Scholar]
  4. Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev 2007;20:368–389 [CrossRef][PubMed]
    [Google Scholar]
  5. Kuhnert P, Christensen H. Pasteurellaceae: Biology, Genomics and Molecular Aspects Horizon Scientific Press; 2008
    [Google Scholar]
  6. Stull TL, Mendelman PM, Haas JE, Schoenborn MA, Mack KD et al. Characterization of Haemophilus influenzae type b fimbriae. Infect Immun 1984;46:787–796[PubMed]
    [Google Scholar]
  7. Gilsdorf JR, McCrea KW, Marrs CF. Role of pili in Haemophilus influenzae adherence and colonization. Infect Immun 1997;65:2997–3002[PubMed]
    [Google Scholar]
  8. St Geme JW. Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell Microbiol 2002;4:191–200 [CrossRef][PubMed]
    [Google Scholar]
  9. Ehrlich GD, Veeh R, Wang X, Costerton JW, Hayes JD et al. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 2002;287:1710–1715 [CrossRef][PubMed]
    [Google Scholar]
  10. Murphy TF, Kirkham C. Biofilm formation by nontypeable Haemophilus influenzae: strain variability, outer membrane antigen expression and role of pili. BMC Microbiol 2002;2:7 [CrossRef][PubMed]
    [Google Scholar]
  11. Mokrzan EM, Ward MO, Bakaletz LO. Type IV pilus expression is upregulated in nontypeable Haemophilus influenzae biofilms formed at the temperature of the human nasopharynx. J Bacteriol 2016;198:2619–2630 [CrossRef][PubMed]
    [Google Scholar]
  12. Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA et al. Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005;73:1635–1643 [CrossRef][PubMed]
    [Google Scholar]
  13. Jurcisek JA, Bookwalter JE, Baker BD, Fernandez S, Novotny LA et al. The PilA protein of non-typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Mol Microbiol 2007;65:1288–1299 [CrossRef][PubMed]
    [Google Scholar]
  14. Eaton KA, Morgan DR, Krakowka S. Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori. J Med Microbiol 1992;37:123–127 [CrossRef][PubMed]
    [Google Scholar]
  15. Nuijten PJ, van den Berg AJ, Formentini I, van der Zeijst BA, Jacobs AA. DNA rearrangements in the flagellin locus of an flaA mutant of Campylobacter jejuni during colonization of chicken ceca. Infect Immun 2000;68:7137–7140 [CrossRef][PubMed]
    [Google Scholar]
  16. Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol 2002;291:605–614 [CrossRef][PubMed]
    [Google Scholar]
  17. Tominaga A, Mahmoud MA, Mukaihara T, Enomoto M. Molecular characterization of intact, but cryptic, flagellin genes in the genus Shigella. Mol Microbiol 1994;12:277–285 [CrossRef][PubMed]
    [Google Scholar]
  18. Girón JA. Expression of flagella and motility by Shigella. Mol Microbiol 1995;18:63–75 [CrossRef][PubMed]
    [Google Scholar]
  19. Negrete-Abascal E, Reyes ME, García RM, Vaca S, Girón JA et al. Flagella and motility in Actinobacillus pleuropneumoniae. J Bacteriol 2003;185:664–668 [CrossRef][PubMed]
    [Google Scholar]
  20. Hendolin PH, Paulin L, Ylikoski J. Clinically applicable multiplex PCR for four middle ear pathogens. J Clin Microbiol 2000;38:125–132[PubMed]
    [Google Scholar]
  21. Garcia C, Lozano P, Rivera JOS, Giono S, Martinez Y et al. Identificacion y tipificacion de Haemophilus influenzae mediante PCR multiple. Univ Méd Bogotá 2008;49:436–452
    [Google Scholar]
  22. Carabarin-Lima A, León-Izurieta L, Rocha-Gracia RC, Castañeda-Lucio M, Torres C et al. First evidence of polar flagella in Klebsiella pneumoniae isolated from a patient with neonatal Sepsis. J Med Microbiol 2016;65:729–737 [CrossRef][PubMed]
    [Google Scholar]
  23. Kodaka H, Armfield AY, Lombard GL, Dowell VR. Practical procedure for demonstrating bacterial flagella. J Clin Microbiol 1982;16:948–952[PubMed]
    [Google Scholar]
  24. Xicohtencatl-Cortés J, Lyons S, Chaparro AP, Hernández DR, Saldaña Z et al. Identification of proinflammatory flagellin proteins in supernatants of Vibrio cholerae O1 by proteomics analysis. Mol Cell Proteomics 2006;5:2374–2383 [CrossRef][PubMed]
    [Google Scholar]
  25. Hazelbauer GL. Bacterial chemotaxis: the early years of molecular studies. Annu Rev Microbiol 2012;66:285–303 [CrossRef][PubMed]
    [Google Scholar]
  26. Allen-Vercoe E, Woodward MJ. The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype enteritidis to chick gut explant. J Med Microbiol 1999;48:771–780 [CrossRef][PubMed]
    [Google Scholar]
  27. La Ragione RM, Sayers AR, Woodward MJ. The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78:K80 in the day-old-chick model. Epidemiol Infect 2000;124:351–363 [CrossRef][PubMed]
    [Google Scholar]
  28. Krukonis ES, Dirita VJ. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol 2003;6:186–190 [CrossRef][PubMed]
    [Google Scholar]
  29. Arora SK, Neely AN, Blair B, Lory S, Ramphal R. Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun 2005;73:4395–4398 [CrossRef][PubMed]
    [Google Scholar]
  30. Ormonde P, Hörstedt P, O'Toole R, Milton DL. Role of motility in adherence to and invasion of a fish cell line by Vibrio anguillarum. J Bacteriol 2000;182:2326–2328 [CrossRef][PubMed]
    [Google Scholar]
  31. O'Neil HS, Marquis H. Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 2006;74:6675–6681 [CrossRef][PubMed]
    [Google Scholar]
  32. Eaton KA, Suerbaum S, Josenhans C, Krakowka S. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 1996;64:2445–2448[PubMed]
    [Google Scholar]
  33. Girón JA, Torres AG, Freer E, Kaper JB. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 2002;44:361–379 [CrossRef][PubMed]
    [Google Scholar]
  34. Artman M, Domenech E, Weiner M. Growth of Haemophilus influenzae in simulated blood cultures supplemented with hemin and NAD. J Clin Microbiol 1983;18:376–379[PubMed]
    [Google Scholar]
  35. Stone KD, Zhang HZ, Carlson LK, Donnenberg MS. A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol 1996;20:325–337 [CrossRef][PubMed]
    [Google Scholar]
  36. Knutton S, Shaw RK, Anantha RP, Donnenberg MS, Zorgani AA. The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal. Mol Microbiol 1999;33:499–509 [CrossRef][PubMed]
    [Google Scholar]
  37. Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J et al. Living on a surface: swarming and biofilm formation. Trends Microbiol 2008;16:496–506 [CrossRef][PubMed]
    [Google Scholar]
  38. Sockett RE. Characterizing flagella and motile behavior. Method Microbiol 1998;27:227–238[CrossRef]
    [Google Scholar]
  39. Brimer CD, Montie TC. Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J Bacteriol 1998;180:3209–3217[PubMed]
    [Google Scholar]
  40. Moraes CT, Polatto JM, Rossato SS, Izquierdo M, Munhoz DD et al. Flagellin and GroEL mediates in vitro binding of an atypical enteropathogenic Escherichia coli to cellular fibronectin. BMC Microbiol 2015;15:278 [CrossRef][PubMed]
    [Google Scholar]
  41. Levine MM, Bergquist EJ, Nalin DR, Waterman DH, Hornick RB et al. Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1978;1:1119–1122[PubMed][CrossRef]
    [Google Scholar]
  42. Jerse AE, Yu J, Tall BD, Kaper JB. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci USA 1990;87:7839–7843 [CrossRef][PubMed]
    [Google Scholar]
  43. Negrete-Abascal E, Tenorio VR, Serrano JJ, Garcia C, De La Garza M. Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A. Can J Vet Res 1994;58:83–86[PubMed]
    [Google Scholar]
  44. Martin K, Morlin G, Smith A, Nordyke A, Eisenstark A et al. The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J Bacteriol 1998;180:107–118[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000471
Loading
/content/journal/jmm/10.1099/jmm.0.000471
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error