1887

Abstract

The occurrence of quinolone-resistance genes ( and ), the presence of mutations in , and , as well as the expression of efflux pumps ( and ) and mutations in the gene

Were investigated in 30 -positive isolates of taken from infection and colonization in hospital patients from Recife-PE, Brazil. The detection of the and and analysis of the mutations in and the quinolone-resistance-determining regions of , and were performed by PCR followed by DNA sequencing.

Among the isolates analysed, 73.3 % (=22) presented the gene. For the DNA sequencing, six isolates (K3-A2, K12-A2, K25-A2, K27-A2, K19-A2 and K3-C2) were selected and the and variants were detected. This is the first ever report, to the best of our knowledge, of the presence of in This is also the first report, to the best of our knowledge, of the presence of or with in in Brazil. Mutations were observed in S83 and in . All isolates presented genes for the and efflux pumps and the reverse transcription PCR performed showed that the pumps were being expressed.

KPC-2-positive isolates colonizing patients, which also showed , mutation in and efflux pumps, may be important reservoirs for disseminating these resistance mechanisms in the hospital environment.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000452
2017-04-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/4/477.html?itemId=/content/journal/jmm/10.1099/jmm.0.000452&mimeType=html&fmt=ahah

References

  1. Siu LK, Yeh KM, Lin JC, Fung CP, Chang FY. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis 2012;12:881–887 [CrossRef][PubMed]
    [Google Scholar]
  2. Chiu SK, Wu TL, Chuang YC, Lin JC, Fung CP et al. National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One 2013;8:e69428 [CrossRef][PubMed]
    [Google Scholar]
  3. Nam YS, Cho SY, Yang HY, Park KS, Jang JH et al. Investigation of mutation distribution in DNA gyrase and topoisomerase IV genes in ciprofloxacin-non-susceptible Enterobacteriaceae isolated from blood cultures in a tertiary care university hospital in South Korea, 2005–2010. Int J Antimicrob Agents 2013;41:126–129 [CrossRef][PubMed]
    [Google Scholar]
  4. Lolans K, Calvert K, Won S, Clark J, Hayden MK. Direct ertapenem disk screening method for identification of KPC-producing Klebsiella pneumoniae and Escherichia coli in surveillance swab specimens. J Clin Microbiol 2010;48:836–841 [CrossRef][PubMed]
    [Google Scholar]
  5. Cabral AB, Melo RC, Maciel MA, Lopes AC. Multidrug resistance genes, including bla KPC and bla CTX-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop 2012;45:572–578 [CrossRef][PubMed]
    [Google Scholar]
  6. de Cássia Andrade Melo R, de Barros EM, Loureiro NG, de Melo HR, Maciel MA et al. Presence of fimH, mrkD, and irp2 virulence genes in KPC-2-producing Klebsiella pneumoniae isolates in Recife-PE, Brazil. Curr Microbiol 2014;69:824–831 [CrossRef][PubMed]
    [Google Scholar]
  7. Endimiani A, Carias LL, Hujer AM, Bethel CR, Hujer KM et al. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing bla KPC in the United States. Antimicrob Agents Chemother 2008;52:2680–2682 [CrossRef]
    [Google Scholar]
  8. Yang HY, Nam YS, Lee HJ. Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can J Infect Dis Med Microbiol 2014;25:163–169[PubMed]
    [Google Scholar]
  9. Paiva MC, Nascimento AM, Camargo IL, Lima-Bittencourt CI, Nardi RM. The first report of the qnrB19, qnrS1 and aac(6′)-Ib-cr genes in urinary isolates of ciprofloxacin-resistant Escherichia coli in Brazil. Mem Inst Oswaldo Cruz 2012;107:687–689 [CrossRef][PubMed]
    [Google Scholar]
  10. Peirano G, Asensi MD, Pitondo-Silva A, Pitout JD. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli from Rio de Janeiro, Brazil. Clin Microbiol Infect 2011;17:1039–1043 [CrossRef][PubMed]
    [Google Scholar]
  11. Viana AL, Cayô R, Avelino CC, Gales AC, Franco MC et al. Extended-spectrum β-lactamases in Enterobacteriaceae isolated in Brazil carry distinct types of plasmid-mediated quinolone resistance genes. J Med Microbiol 2013;62:1326–1331 [CrossRef][PubMed]
    [Google Scholar]
  12. Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 2014;58:1707–1712 [CrossRef][PubMed]
    [Google Scholar]
  13. Hentschke M, Wolters M, Sobottka I, Rohde H, Aepfelbacher M. ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother 2010;54:2720–2723 [CrossRef][PubMed]
    [Google Scholar]
  14. de Majumdar S, Yu J, Spencer J, Tikhonova IG, Schneiders T. Molecular basis of non-mutational derepression of ramA in Klebsiella pneumoniae. J Antimicrob Chemother 2014;69:2681–2689 [CrossRef][PubMed]
    [Google Scholar]
  15. Bialek-Davenet S, Marcon E, Leflon-Guibout V, Lavigne JP, Bert F et al. In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob Agents Chemother 2011;55:2795–2802 [CrossRef]
    [Google Scholar]
  16. CLSI Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement, M100-S24 Wayne, PA: Clinical and Laboratory Standards Institute; 2014
    [Google Scholar]
  17. Ogawa W, Li DW, Yu P, Begum A, Mizushima T et al. Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol Pharm Bull 2005;28:1505–1508 [CrossRef][PubMed]
    [Google Scholar]
  18. Seyedpour SM, Eftekhar F. Quinolone susceptibility and detection of qnr and aac(6′)-Ib-cr genes in community isolates of Klebsiella pneumoniae. Jundishapur J Microbiol 2014;7:1–4 [CrossRef][PubMed]
    [Google Scholar]
  19. Ferjani S, Saidani M, Amine FS, Boutiba-Ben Boubaker I. Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrum β-lactamase-producing Enterobacteriaceae in a Tunisian hospital. Microb Drug Resist 2015;21:158–166 [CrossRef][PubMed]
    [Google Scholar]
  20. Filippa N, Carricajo A, Grattard F, Fascia P, El Sayed F et al. Outbreak of multidrug-resistant Klebsiella pneumoniae carrying qnrB1 and blaCTX-M15 in a French intensive care unit. Ann Intensive Care 2013;3:18 [CrossRef]
    [Google Scholar]
  21. Chmelnitsky I, Navon-Venezia S, Strahilevitz J, Carmeli Y. Plasmid-mediated qnrB2 and carbapenemase gene bla KPC-2 carried on the same plasmid in carbapenem-resistant ciprofloxacin-susceptible Enterobacter cloacae isolates. Antimicrob Agents Chemother 2008;52:2962–2965 [CrossRef][PubMed]
    [Google Scholar]
  22. Jiang Y, Yu D, Wei Z, Shen P, Zhou Z et al. Complete nucleotide sequence of Klebsiella pneumoniae multidrug resistance plasmid pKP048, carrying bla KPC-2, bla DHA-1, qnrB4, and armA. Antimicrob Agents Chemother 2010;54:3967–3969 [CrossRef][PubMed]
    [Google Scholar]
  23. Zhang R, Wang XD, Cai JC, Zhou HW, Lv HX et al. Outbreak of Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae with high qnr prevalence in a Chinese hospital. J Med Microbiol 2011;60:977–982 [CrossRef][PubMed]
    [Google Scholar]
  24. Kehrenberg C, Friederichs S, de Jong A, Schwarz S. Novel variant of the qnrB gene, qnrB12, in Citrobacter werkmanii. Antimicrob Agents Chemother 2008;52:1206–1207 [CrossRef][PubMed]
    [Google Scholar]
  25. Gunell M, Hakanen AJ, Jalava J, Huovinen P, Osterblad M. Hidden qnrB12 gene in a Finnish faecal microbiota isolate from 1994. J Antimicrob Chemother 2009;64:861–862 [CrossRef][PubMed]
    [Google Scholar]
  26. Pallecchi L, Riccobono E, Mantella A, Bartalesi F, Sennati S et al. High prevalence of qnr genes in commensal enterobacteria from healthy children in Peru and Bolivia. Antimicrob Agents Chemother 2009;53:2632–2635 [CrossRef][PubMed]
    [Google Scholar]
  27. Veras DL, Alves LC, Brayner FA, Guedes DR, Maciel MA et al. Prevalence of the bla SHV gene in Klebsiella pneumoniae isolates obtained from hospital and community infections and from the microbiota of healthy individuals in Recife, Brazil. Curr Microbiol 2011;62:1610–1616 [CrossRef][PubMed]
    [Google Scholar]
  28. Mathers AJ, Cox HL, Kitchel B, Bonatti H, Brassinga AK et al. Molecular dissection of an outbreak of carbapenem-resistant Enterobacteriaceae reveals intergenus KPC carbapenemase transmission through a promiscuous plasmid. MBio 2011;2:e00204-11 [CrossRef][PubMed]
    [Google Scholar]
  29. Bilavsky E, Schwaber MJ, Carmeli Y. How to stem the tide of carbapenemase-producing Enterobacteriaceae? Proactive versus reactive strategies. Curr Opin Infect Dis 2010;23:327–331 [CrossRef]
    [Google Scholar]
  30. Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G et al. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis 2011;52:848–855 [CrossRef][PubMed]
    [Google Scholar]
  31. Schechner V, Kotlovsky T, Kazma M, Mishali H, Schwartz D et al. Asymptomatic rectal carriage of bla KPC producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected?. Clin Microbiol Infect 2013;19:451–456 [CrossRef][PubMed]
    [Google Scholar]
  32. Borer A, Saidel-Odes L, Eskira S, Nativ R, Riesenberg K et al. Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K pneumoniae. Am J Infect Control 2012;40:421–425 [CrossRef][PubMed]
    [Google Scholar]
  33. Feldman N, Adler A, Molshatzki N, Navon-Venezia S, Khabra E et al. Gastrointestinal colonization by KPC-producing Klebsiella pneumoniae following hospital discharge: duration of carriage and risk factors for persistent carriage. Clin Microbiol Infect 2013;19:E190E196 [CrossRef][PubMed]
    [Google Scholar]
  34. Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA et al. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 2009;53:639–645 [CrossRef][PubMed]
    [Google Scholar]
  35. Machuca J, Briales A, Labrador G, Díaz-de-Alba P, López-Rojas R et al. Interplay between plasmid-mediated and chromosomal-mediated fluoroquinolone resistance and bacterial fitness in Escherichia coli. J Antimicrob Chemother 2014;69:3203–3215 [CrossRef][PubMed]
    [Google Scholar]
  36. Wu W, Wang H, Lu J, Wu J, Chen M et al. Genetic diversity of Salmonella enteric serovar typhi and paratyphi in Shenzhen, China from 2002 through 2007. BMC Microbiol 2010;10:32 [CrossRef]
    [Google Scholar]
  37. Zhang Z, Meng X, Wang Y, Xia X, Wang X et al. Presence of qnr, aac(6′)-Ib, qepA, oqxAB, and mutations in gyrase and topoisomerase in nalidixic acid-resistant Salmonella isolates recovered from retail chicken carcasses. Foodborne Pathog Dis 2014;11:698–705 [CrossRef][PubMed]
    [Google Scholar]
  38. Guan X, Xue X, Liu Y, Wang J, Wang Y et al. Plasmid-mediated quinolone resistance – current knowledge and future perspectives. J Int Med Res 2013;41:20–30 [CrossRef][PubMed]
    [Google Scholar]
  39. Nishino K, Hayashi-Nishino M, Yamaguchi A. H-NS modulates multidrug resistance of Salmonella enterica serovar typhimurium by repressing multidrug efflux genes acrEF. Antimicrob Agents Chemother 2009;53:3541–3543 [CrossRef][PubMed]
    [Google Scholar]
  40. Lin MY, Lyles-Banks RD, Lolans K, Hines DW, Spear JB et al. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis 2013;57:1246–1252[Crossref]
    [Google Scholar]
  41. Papadimitriou-Olivgeris M, Marangos M, Fligou F, Christofidou M, Sklavou C et al. KPC-producing Klebsiella pneumoniae enteric colonization acquired during intensive care unit stay: the significance of risk factors for its development and its impact on mortality. Diagn Microbiol Infect Dis 2013;77:169–173 [CrossRef][PubMed]
    [Google Scholar]
  42. Brisse S, Verhoef J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 2001;51:915–924 [CrossRef][PubMed]
    [Google Scholar]
  43. Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the united states. Antimicrob Agents Chemother 2006;50:2872–2874 [CrossRef][PubMed]
    [Google Scholar]
  44. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 2007;60:394–397 [CrossRef][PubMed]
    [Google Scholar]
  45. Bratu S, Landman D, George A, Salvani J, Quale J. Correlation of the expression of acrB and the regulatory genes marA, soxS and ramA with antimicrobial resistance in clinical isolates of Klebsiella pneumoniae endemic to New York city. J Antimicrob Chemother 2009;64:278–283 [CrossRef][PubMed]
    [Google Scholar]
  46. Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA et al. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 2010;54:177–183 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000452
Loading
/content/journal/jmm/10.1099/jmm.0.000452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error