1887

Abstract

Purpose. The objectives of our study were species identification and genotyping of Trichosporon isolates collected at the Parasitology and Mycology Laboratory in Sfax, Tunisia.

Methodology. Molecular identification was carried out by analysing the IGS1 regions of the rDNA of 30 Trichosporon isolates.

Results. Trichosporon asahii was the most frequent species detected. Furthermore, four genotypes were identified in Tunisia: 1 (46.4 %), 4 (35.7 %), 7 (14.3 %) and 3 (3.6 %). In vitro antifungal susceptibility testing of the isolates showed that voriconazole exhibited the highest activity.

Conclusion. This is the first reported study of genotype identification of T. asahii in Tunisia and even in the African continent.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000442
2017-04-28
2019-11-11
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/4/397.html?itemId=/content/journal/jmm/10.1099/jmm.0.000442&mimeType=html&fmt=ahah

References

  1. Chagas-Neto TC, Chaves GM, Colombo AL. Update on the genus T richosporon. Mycopathologia 2008; 166: 121– 132 [CrossRef] [PubMed]
    [Google Scholar]
  2. Colombo AL, Padovan AC, Chaves GM. Current knowledge of Trichosporon spp. and trichosporonosis. Clin Microbiol Rev 2011; 24: 682– 700 [CrossRef] [PubMed]
    [Google Scholar]
  3. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 2015; 81: 85– 147 [CrossRef] [PubMed]
    [Google Scholar]
  4. Freydiere AM, Guinet R, Boiron P. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Med Mycol 2001; 39: 9– 33 [CrossRef] [PubMed]
    [Google Scholar]
  5. Massonet C, Van Eldere J, Vaneechoutte M, De Baere T, Verhaegen J et al. Comparison of VITEK 2 with ITS2-fragment length polymorphism analysis for identification of yeast species. J Clin Microbiol 2004; 42: 2209– 2211 [CrossRef] [PubMed]
    [Google Scholar]
  6. Pincus DH, Orenga S, Chatellier S. Yeast identification — past, present, and future methods. Med Mycol 2007; 45: 97– 121 [CrossRef] [PubMed]
    [Google Scholar]
  7. Chagas-Neto TC, Chaves GM, Melo AS, Colombo AL. Bloodstream infections due to T richosporon spp.: species distribution, Trichosporon asahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Microbiol 2009; 47: 1074– 1081 [CrossRef] [PubMed]
    [Google Scholar]
  8. Guo LN, Xiao M, Kong F, Chen SC, Wang H et al. Three-locus identification, genotyping, and antifungal susceptibilities of medically important Trichosporon species from China. J Clin Microbiol 2011; 49: 3805– 3811 [CrossRef] [PubMed]
    [Google Scholar]
  9. Sugita T, Nakajima M, Ikeda R, Matsushima T, Shinoda T. Sequence analysis of the ribosomal DNA intergenic spacer 1 regions of T richosporon species. J Clin Microbiol 2002; 40: 1826– 1830 [CrossRef] [PubMed]
    [Google Scholar]
  10. Sugita T, Nishikawa A, Shinoda T. Rapid detection of species of the opportunistic yeast Trichosporon by PCR. J Clin Microbiol 1998; 36: 1458– 1460 [PubMed]
    [Google Scholar]
  11. Liao Y, Lu X, Yang S, Luo Y, Chen Q et al. Epidemiology and outcome of Trichosporon fungemia: a review of 185 reported cases from 1975 to 2014. Open Forum Infect Dis 2015; 25: 141 [Crossref]
    [Google Scholar]
  12. Suzuki K, Nakase K, Kyo T, Kohara T, Sugawara Y et al. Fatal T richosporon fungemia in patients with hematologic malignancies. Eur J Haematol 2010; 84: 441– 447 [CrossRef] [PubMed]
    [Google Scholar]
  13. Thérizol-Ferly M, Kombila M, Gomez de Diaz M, Duong TH, Richard-Lenoble D. White piedra and T richosporon species in equatorial Africa. I. History and clinical aspects: an analysis of 449 superficial inguinal specimens. Mycoses 1994; 37: 249– 253 [CrossRef] [PubMed]
    [Google Scholar]
  14. Piwoz JA, Stadtmauer GJ, Bottone EJ, Weitzman I, Shlasko E et al. Trichosporon inkin lung abscesses presenting as a penetrating chest wall mass. Pediatr Infect Dis J 2000; 19: 1025– 1027 [CrossRef] [PubMed]
    [Google Scholar]
  15. Chaumentin G, Boibieux A, Piens MA, Douchet C, Buttard P et al. Trichosporon inkin endocarditis: short-term evolution and clinical report. Clin Infect Dis 1996; 23: 396– 397 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kalkanci A, Sugita T, Arikan S, Yucesoy M, Ener B et al. Molecular identification, genotyping, and drug susceptibility of the basidiomycetous yeast pathogen Trichosporon isolated from Turkish patients. Med Mycol 2010; 48: 141– 146 [CrossRef] [PubMed]
    [Google Scholar]
  17. Arabatzis M, Abel P, Kanellopoulou M, Adamou D, Alexandrou-Athanasoulis H et al. Sequence-based identification, genotyping and EUCAST antifungal susceptibilities of Trichosporon clinical isolates from Greece. Clin Microbiol Infect 2014; 20: 777– 783 [CrossRef] [PubMed]
    [Google Scholar]
  18. Almeida AA, do Amaral Crispim, Grisolia AB, Svidzinski TI, Ortolani LG et al. Genotype, antifungal susceptibility, and biofilm formation of T richosporon asahii isolated from the urine of hospitalized patients. Rev Argent Microbiol 2016; 48: 62– 66 [CrossRef] [PubMed]
    [Google Scholar]
  19. Araujo Ribeiro M, Alastruey-Izquierdo A, Gomez-Lopez A, Rodriguez-Tudela JL, Cuenca-Estrella M. Molecular identification and susceptibility testing of Trichosporon isolates from a Brazilian hospital. Rev Iberoam Micol 2008; 25: 221– 225 [PubMed] [Crossref]
    [Google Scholar]
  20. Xia Z, Yang R, Wang W, Cong L. Genotyping and antifungal drug susceptibility of T richosporon asahii isolated from Chinese patients. Mycopathologia 2012; 173: 127– 133 [CrossRef] [PubMed]
    [Google Scholar]
  21. Mekha N, Sugita T, Ikeda R, Nishikawa A, Autthateinchai R et al. Genotyping and antifungal drug susceptibility of the pathogenic yeast Trichosporon asahii isolated from Thai patients. Mycopathologia 2010; 169: 67– 70 [CrossRef] [PubMed]
    [Google Scholar]
  22. Taverna CG, Córdoba S, Murisengo OA, Vivot W, Davel G et al. Molecular identification, genotyping, and antifungal susceptibility testing of clinically relevant Trichosporon species from Argentina. Med Mycol 2014; 52: 356– 366 [CrossRef] [PubMed]
    [Google Scholar]
  23. Rodriguez-Tudela JL, Gomez-Lopez A, Alastruey-Izquierdo A, Mellado E, Bernal-Martinez L et al. Genotype distribution of clinical isolates of Trichosporon asahii based on sequencing of intergenic spacer 1. Diagn Microbiol Infect Dis 2007; 58: 435– 440 [CrossRef] [PubMed]
    [Google Scholar]
  24. Rastogi V, Honnavar P, Rudramurthy SM, Pamidi U, Ghosh A et al. Molecular characterisation and antifungal susceptibility of clinical Trichosporon isolates in India. Mycoses 2016; 59: 528– 534 [CrossRef] [PubMed]
    [Google Scholar]
  25. Arikan S, Hasçelik G. Comparison of NCCLS microdilution method and Etest in antifungal susceptibility testing of clinical Trichosporon asahii isolates. Diagn Microbiol Infect Dis 2002; 43: 107– 111 [CrossRef] [PubMed]
    [Google Scholar]
  26. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Bijie H et al. Results from the ARTEMIS DISK global antifungal surveillance study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 2009; 47: 117– 123 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000442
Loading
/content/journal/jmm/10.1099/jmm.0.000442
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error