1887

Abstract

Community-associated meticillin-resistant (CA-MRSA) have emerged globally and have been associated with more severe disease than healthcare-associated MRSA (HA-MRSA). The purpose of this study was to determine whether laboratory measures of virulence can distinguish dominant CA-MRSA clones from HA-MRSA clones. We compared the production of phenol-soluble modulins (PSMs) and ability to kill caterpillars for a range of CA- and HA-MRSA strains. Twenty-two HA-MRSA strains [ST22-IV (EMRSA-15), ST36-II (EMRSA-16) and ST239-III] and 26 CA-MRSA strains [ST1-IV (PVL+ USA400), ST1-IV (PVL–), ST8-IV (USA300), ST22-IV (PVL+), ST30-IV, ST59-IV and ST80-IV] were analysed. PSM production was measured using and compared using -tests and ANOVA. A (caterpillar) pathogenicity model was performed, and differences were compared using survival analysis and the log-rank test. There was no significant difference in overall PSM production between HA and CA strains (=0.090), but there was significant variation between clones (=0.003). caterpillar killing varied significantly by clone (<0.001), and overall killing was greater for HA compared with CA clones (=0.007). The increased acute virulence phenotype of CA-MRSA clones in humans is not associated with increased PSM production or increased killing in an caterpillar pathogenicity model.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000379
2016-12-16
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/12/1429.html?itemId=/content/journal/jmm/10.1099/jmm.0.000379&mimeType=html&fmt=ahah

References

  1. Anderson L., Hunter C. L.. 2006; Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics5:573–588 [CrossRef][PubMed]
    [Google Scholar]
  2. Boakes E., Kearns A. M., Ganner M., Perry C., Warner M., Hill R. L., Ellington M. J.. 2011; Molecular diversity within clonal complex 22 methicillin-resistant Staphylococcus aureus encoding Panton-Valentine leukocidin in England and Wales. Clin Microbiol Infect17:140–145 [CrossRef][PubMed]
    [Google Scholar]
  3. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  4. Bubeck Wardenburg J., Palazzolo-Ballance A. M., Otto M., Schneewind O., DeLeo F. R., Bubeck W. J.. 2008; Panton- Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis198:1166–1170 [CrossRef][PubMed]
    [Google Scholar]
  5. Chambers H. F.. 2005; Community-associated MRSA-resistance and virulence converge. N Engl J Med352:1485–1487 [CrossRef][PubMed]
    [Google Scholar]
  6. Chambers H. F., Deleo F. R.. 2009; Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol7:629–641 [CrossRef][PubMed]
    [Google Scholar]
  7. Cheung G. Y., Wang R., Khan B. A., Sturdevant D. E., Otto M.. 2011; Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun79:1927–1935 [CrossRef][PubMed]
    [Google Scholar]
  8. Chua K. Y., Seemann T., Harrison P. F., Monagle S., Korman T. M., Johnson P. D., Coombs G. W., Howden B. O., Davies J. K. et al. 2011; The dominant Australian community-acquired methicillin-resistant Staphylococcus aureus clone ST93-IV [2B] is highly virulent and genetically distinct. PLoS One6:e25887 [CrossRef][PubMed]
    [Google Scholar]
  9. David M. Z., Daum R. S.. 2010; Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev23:616–687 [CrossRef][PubMed]
    [Google Scholar]
  10. HPA 2008; Guidance on the diagnosis and management of PVL-associated Staphylococcus aureus infections (PVL-SA) in England.
  11. Joo H. S., Chan J. L., Cheung G. Y., Otto M.. 2010; Subinhibitory concentrations of protein synthesis-inhibiting antibiotics promote increased expression of the agr virulence regulator and production of phenol-soluble modulin cytolysins in community-associated methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother54:4942–4944 [CrossRef][PubMed]
    [Google Scholar]
  12. Joo H. S., Cheung G. Y., Otto M.. 2011; Antimicrobial activity of community-associated methicillin-resistant Staphylococcus aureus is caused by phenol-soluble modulin derivatives. J Biol Chem286:8933–8940 [CrossRef][PubMed]
    [Google Scholar]
  13. Labandeira-Rey M., Couzon F., Boisset S., Brown E. L., Bes M., Benito Y., Barbu E. M., Vazquez V., Höök M. et al. 2007; Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science315:1130–1133 [CrossRef][PubMed]
    [Google Scholar]
  14. Li M., Diep B. A., Villaruz A. E., Braughton K. R., Jiang X., DeLeo F. R., Chambers H. F., Lu Y., Otto M.. 2009; Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A106:5883–5888 [CrossRef]
    [Google Scholar]
  15. Montgomery C. P., Boyle-Vavra S., Adem P. V., Lee J. C., Husain A. N., Clasen J., Daum R. S.. 2008; Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis198:561–570 [CrossRef][PubMed]
    [Google Scholar]
  16. Naimi T. S., LeDell K. H., Como-Sabetti K., Borchardt S. M., Boxrud D. J., Etienne J., Johnson S. K., Vandenesch F., Fridkin S. et al. 2003; Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. J Am Med Assoc290:2976–2984 [CrossRef][PubMed]
    [Google Scholar]
  17. Otter J. A., French G. L.. 2010; Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect Dis10:227–239 [CrossRef][PubMed]
    [Google Scholar]
  18. Otter J. A., French G. L.. 2011; Community-associated meticillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection. J Hosp Infect79:189–193 [CrossRef][PubMed]
    [Google Scholar]
  19. Otter J. A., French G. L.. 2012; Community-associated meticillin-resistant Staphylococcus aureus: the case for a genotypic definition. J Hosp Infect81:143–148 [CrossRef][PubMed]
    [Google Scholar]
  20. Otto M.. 2010; Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol64:143–162 [CrossRef][PubMed]
    [Google Scholar]
  21. Otto M.. 2013; Community-associated MRSA: what makes them special?. Int J Med Microbiol303:324–330 [CrossRef][PubMed]
    [Google Scholar]
  22. Peleg A. Y., Monga D., Pillai S., Mylonakis E., Moellering R. C. Jr., Eliopoulos G. M.. 2009; Reduced susceptibility to vancomycin influences pathogenicity in Staphylococcus aureus infection. J Infect Dis199:532–536 [CrossRef][PubMed]
    [Google Scholar]
  23. Ramarao N., Nielsen-Leroux C., Lereclus D.. 2012; The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp70:e4392
    [Google Scholar]
  24. Rasigade J. P., Trouillet-Assant S., Ferry T., Diep B. A., Sapin A., Lhoste Y., Ranfaing J., Badiou C., Benito Y. et al. 2013; PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts. PLoS One8:e63176 [CrossRef][PubMed]
    [Google Scholar]
  25. Rautenberg M., Joo H. S., Otto M., Peschel A.. 2011; Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. FASEB J25:1254–1263 [CrossRef][PubMed]
    [Google Scholar]
  26. Richards R. L., Haigh R. D., Pascoe B., Sheppard S. K., Price F., Jenkins D., Rajakumar K., Morrissey J. A.. 2015; Persistent Staphylococcus aureus isolates from two independent cases of bacteremia display increased bacterial fitness and novel immune evasion phenotypes. Infect Immun83:3311–3324 [CrossRef][PubMed]
    [Google Scholar]
  27. Tenover F. C., Goering R. V.. 2009; Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother64:441–446 [CrossRef][PubMed]
    [Google Scholar]
  28. Thurlow L. R., Joshi G. S., Richardson A. R.. 2012; Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). FEMS Immunol Med Microbiol65:5–22 [CrossRef][PubMed]
    [Google Scholar]
  29. Tsompanidou E., Denham E. L., van Dijl J. M.. 2013; Phenol-soluble modulins, hellhounds from the staphylococcal virulence-factor pandemonium. Trends Microbiol21:313–315 [CrossRef][PubMed]
    [Google Scholar]
  30. Wang R., Braughton K. R., Kretschmer D., Bach T. H., Queck S. Y., Li M., Kennedy A. D., Dorward D. W., Klebanoff S. J. et al. 2007; Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med13:1510–1514 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000379
Loading
/content/journal/jmm/10.1099/jmm.0.000379
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error