1887

Abstract

Cancer is defined as an uncontrolled proliferation of malignant cells in a host and it is one of the main causes of death worldwide. Genetic and environmental factors play an important role in its development, and the involvement of microbial communities has also recently been recognized. The close relationship that characterizes the colonization by human commensal communities involves health risks, particularly when the homeostasis is disturbed. It has been hypothesized that this process may lead to cancer by modulating the inflammatory response of the host, by the production of carcinogenic metabolic products or by the production of toxins, which disrupt the cell cycle. The metabolic effects of the intestinal microbiota have been studied in greater detail in the gastrointestinal tract, and it has been recognized that microbial communities of other body surfaces can cause effects either locally or at a distance. In vitro and in vivo studies have allowed the characterization of the microbiota and the establishment of a cause and effect relationship with some types of cancer. Nevertheless, despite the results, representative studies are necessary to validate the findings and definitively establish the role of microbiota in cancer development in order to open the possibility of promising therapeutic and diagnostic applications. Thus, the aims of this review are to briefly examine the available evidence, and to analyse the mechanisms described for pancreatic, lung, colorectal cancer , oral squamous cell carcinoma and hepatocellular carcinoma and the impact of the current knowledge about the effects of the microbiota on carcinogenesis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000371
2016-12-16
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/12/1347.html?itemId=/content/journal/jmm/10.1099/jmm.0.000371&mimeType=html&fmt=ahah

References

  1. Aguiar-Pulido V., Huang W., Suarez-Ulloa V., Cickovski T., Mathee K., Narasimhan G..( 2016;). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. . Evol Bioinform 12: 5–6.
    [Google Scholar]
  2. Al-Hebshi N., Thabet Nasher A., Mohamed Idris A., Chen T..( 2015;). Robust species taxonomy assignment algorithm for 16S rRNA NGS reads: application to oral carcinoma samples. . J Oral Microbiol 7: 1–9. [CrossRef]
    [Google Scholar]
  3. Arslan N..( 2014;). Obesity, fatty liver disease and intestinal microbiota. . World J Gastroenterol 20: 16452–16463. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arthur J. C., Jobin C..( 2011;). The struggle within: microbial influences on colorectal cancer. . Inflamm Bowel Dis 17: 396–409. [CrossRef] [PubMed]
    [Google Scholar]
  5. Barrett R., Kuzawa C. W., McDade T. A. G..( 1998;). Emerging and re-emerging infectious diseases: the third epidemiologic transition. . Annu Rev Anthropol 27: 247–271.[Crossref]
    [Google Scholar]
  6. Belizário J. E., Napolitano M..( 2015;). Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. . Front Microbiol 6: 1–16. [CrossRef]
    [Google Scholar]
  7. Blaser M. J..( 2006;). Who are we? Indigenous microbes and the ecology of human diseases. . EMBO Rep 7: 956–960. [CrossRef] [PubMed]
    [Google Scholar]
  8. Blaser M. J., Falkow S..( 2009;). What are the consequences of the disappearing human microbiota?. Nat Rev Microbiol 7: 887–894. [CrossRef] [PubMed]
    [Google Scholar]
  9. Blumberg R., Powrie F..( 2012;). Microbiota, disease, and back to health: a metastable journey. . Sci Transl Med 4: 137rv7. [CrossRef] [PubMed]
    [Google Scholar]
  10. Boleij A., Hechenbleikner E. M., Goodwin A. C., Badani R., Stein E. M., Lazarev M. G., Ellis B., Carroll K. C., Albesiano E. et al.( 2015;). The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. . Clin Infect Dis 60: 208–215. [CrossRef] [PubMed]
    [Google Scholar]
  11. Bultman S. J..( 2014;). Emerging roles of the microbiome in cancer. . Carcinogenesis 35: 249–255. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cesaro C., Tiso A., Del Prete A., Cariello R., Tuccillo C., Cotticelli G., Del Vecchio Blanco C., Loguercio C..( 2011;). Gut microbiota and probiotics in chronic liver diseases. . Dig Liver Dis 43: 431–438. [CrossRef] [PubMed]
    [Google Scholar]
  13. Cho I., Blaser M. J..( 2012;). The human microbiome: at the interface of health and disease. . Nat Rev Genet 13: 260–270. [CrossRef] [PubMed]
    [Google Scholar]
  14. Clemente J. C., Ursell L. K., Parfrey L. W., Knight R..( 2012;). The impact of the gut microbiota on human health: an integrative view. . Cell 148: 1258–1270. [CrossRef] [PubMed]
    [Google Scholar]
  15. Costello E. K., Lauber C. L., Hamady M., Fierer N., Gordon J., Knight R..( 2009;). Bacterial community variation in human body habitats across space and time. . Science 326: 1694–1697. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dapito D. H., Mencin A., Gwak G. Y., Pradere J. P., Jang M. K., Mederacke I., Caviglia J. M., Khiabanian H., Adeyemi A. et al.( 2012;). Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. . Cancer Cell 21: 504–516. [CrossRef] [PubMed]
    [Google Scholar]
  17. Darnaud M., Faivre J., Moniaux N..( 2013;). Targeting gut flora to prevent progression of hepatocellular carcinoma. . J Hepatol 58: 385–387. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dewhirst F. E., Chen T., Izard J., Paster B. J., Tanner A. C., Yu W. H., Lakshmanan A., Wade W. G..( 2010;). The human oral microbiome. . J Bacteriol 192: 5002–5017. [CrossRef] [PubMed]
    [Google Scholar]
  19. Dickson R. P., Martinez F. J., Huffnagle G. B..( 2014;). The role of the microbiome in exacerbations of chronic lung diseases. . Lancet 384: 691–702. [CrossRef] [PubMed]
    [Google Scholar]
  20. Dickson R. P., Huffnagle G. B..( 2015;). The lung microbiome: new principles for respiratory bacteriology in health and disease. . PLoS Pathog 11: e1004923. [CrossRef] [PubMed]
    [Google Scholar]
  21. Dietert R. R., Dietert J. M..( 2015;). The microbiome and sustainable healthcare. . Healthcare 3: 100–129. [CrossRef] [PubMed]
    [Google Scholar]
  22. Dietert R. R., Silbergeld E. K..( 2015;). Biomarkers for the 21st century: listening to the microbiome. . Toxicol Sci 144: 208–216. [CrossRef] [PubMed]
    [Google Scholar]
  23. D'Argenio V., Salvatore F..( 2015;). The role of the gut microbiome in the healthy adult status. . Clin Chim Acta 451: 97–102. [CrossRef] [PubMed]
    [Google Scholar]
  24. Elinav E., Nowarski R., Thaiss C. A., Hu B., Jin C., Flavell R. A..( 2013;). Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. . Nat Rev Cancer 13: 759–771. [CrossRef] [PubMed]
    [Google Scholar]
  25. Farrell J. J., Zhang L., Zhou H., Chia D., Elashoff D., Akin D., Paster B. J., Joshipura K., Wong D. T..( 2012;). Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. . Gut 61: 582–588. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ferlay J., Soerjomataram I., Ervik M., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D. M., Forman D., Bray F..( 2013;). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. . Lyon, France:: International Agency for Research on Cancer; [ Available from: http://globocan.iarc.fr].
  27. Francescone R., Hou V., Grivennikov S..( 2014;). Microbiome, inflammation, and cancer. . Cancer J 20: 181–189. [CrossRef] [PubMed]
    [Google Scholar]
  28. Fritz J. V., Desai M. S., Shah P., Schneider J. G., Wilmes P..( 2013;). From meta-omics to causality: experimental models for human microbiome research. . Microbiome 1: 14. [CrossRef] [PubMed]
    [Google Scholar]
  29. Fung T. C., Artis D., Sonnenberg G. F..( 2014;). Anatomical localization of commensal bacteria in immune cell homeostasis and disease. . Immunol Rev 260: 35–49. [CrossRef] [PubMed]
    [Google Scholar]
  30. Gagnière J., Raisch J., Veziant J., Barnich N., Bonnet R., Buc E., Bringer M. A., Pezet D., Bonnet M..( 2016;). Gut microbiota imbalance and colorectal cancer. . World J Gastroenterol 22: 501–518. [CrossRef] [PubMed]
    [Google Scholar]
  31. Garrett W. S..( 2015;). Cancer and the microbiota. . Science 348: 80–86. [CrossRef] [PubMed]
    [Google Scholar]
  32. Greer J. B., O’Keefe S. J..( 2011;). Microbial induction of immunity, inflammation, and cancer. . Front Physiol 6: 168.
    [Google Scholar]
  33. Greub G..( 2012;). Culturomics: a new approach to study the human microbiome. . Clin Microbiol Infect 18: 1157–1159. [CrossRef] [PubMed]
    [Google Scholar]
  34. Gui Q. F., Lu H. F., Zhang C. X., Xu Z. R., Yang Y. H..( 2015;). Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. . Genet Mol Res 14: 5642–5651. [CrossRef] [PubMed]
    [Google Scholar]
  35. Guinane C. M., Cotter P. D..( 2013;). Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. . Therap Adv Gastroenterol 6: 295–308. [CrossRef] [PubMed]
    [Google Scholar]
  36. Hara E..( 2015;). Relationship between obesity, gut microbiome and hepatocellular carcinoma development. . Dig Dis 33: 346–350. [CrossRef] [PubMed]
    [Google Scholar]
  37. Hassan M., El-khattouti A., Tandon R..( 2013;). Commensal microbiota in cancer development and therapy. . JSM Microbiol 1: 19–21.[Crossref]
    [Google Scholar]
  38. He J., Li Y., Cao Y., Xue J., Zhou X..( 2015;). The oral microbiome diversity and its relation to human diseases. . Folia Microbiol 60: 69–80. [CrossRef] [PubMed]
    [Google Scholar]
  39. Hebert E. F., Divi R. L., Verma M..( 2015;). Microbiome analysis: trends in cancer epidemiology, challenges and opportunities. . Int J Cancer Res Mol Mech 1: 1–7.
    [Google Scholar]
  40. Hines I. N., Son G., Kremer M..( 2010;). Contribution of gut bacteria to liver pathobiology. . Gastroenterol Res Pract 2010:, 13.
    [Google Scholar]
  41. Hooper L. V., Macpherson A. J..( 2010;). Immune adaptations that maintain homeostasis with the intestinal microbiota. . Nat Rev Immunol 10: 159–169. [CrossRef] [PubMed]
    [Google Scholar]
  42. Hooper L. V., Littman D. R., Macpherson A. J..( 2012;). Interactions between the microbiota and the immune system. . Science 336: 1268–1273. [CrossRef] [PubMed]
    [Google Scholar]
  43. Houghton A. M..( 2013;). Mechanistic links between COPD and lung cancer. . Nat Rev Cancer 13: 233–245. [CrossRef] [PubMed]
    [Google Scholar]
  44. Iida N., Dzutsev A., Stewart C. A., Smith L., Bouladoux N., Weingarten R. A., Molina D. A., Salcedo R., Back T. et al.( 2013;). Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. . Science 342: 967–970. [CrossRef] [PubMed]
    [Google Scholar]
  45. Kamada N., Núñez G..( 2013;). Role of the gut microbiota in the development and function of lymphoid cells. . J Immunol 190: 1389–1395. [CrossRef] [PubMed]
    [Google Scholar]
  46. Kerr D..( 2003;). Clinical development of gene therapy for colorectal cancer. . Nat Rev Cancer 3: 615–622. [CrossRef] [PubMed]
    [Google Scholar]
  47. Khan A. A., Shrivastava A., Khurshid M..( 2012;). Normal to cancer microbiome transformation and its implication in cancer diagnosis. . Biochim Biophys Acta Rev 1826: 331–337. [CrossRef]
    [Google Scholar]
  48. Khurana S..( 2012;). Human microbiome and cancer: an insight. . Indian J Microbiol 52: 519–520. [CrossRef] [PubMed]
    [Google Scholar]
  49. Klaunig J. E., Kamendulis L. M., Hocevar B. A..( 2010;). Oxidative stress and oxidative damage in carcinogenesis. . Toxicol Pathol 38: 96–109. [CrossRef] [PubMed]
    [Google Scholar]
  50. Liaskou E., Wilson D. V., Oo Y. H..( 2012;). Innate Immune Cells in Liver Inflammation. . Mediators Inflamm 2012: 1–21. [CrossRef]
    [Google Scholar]
  51. Logan A. C., Jacka F. N., Prescott S. L..( 2016;). Immune-microbiota interactions: dysbiosis as a global health issue. . Curr Allergy Asthma Rep 16: 13. [CrossRef] [PubMed]
    [Google Scholar]
  52. Louis P., Hold G. L., Flint H. J..( 2014;). The gut microbiota, bacterial metabolites and colorectal cancer. . Nat Rev Microbiol 12: 661–672. [CrossRef] [PubMed]
    [Google Scholar]
  53. Mager D. L., Haffajee A. D., Devlin P. M., Norris C. M., Posner M. R., Goodson J. M..( 2005;). The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. . J Transl Med 3: 27. [CrossRef] [PubMed]
    [Google Scholar]
  54. Marchesi J. R., Dutilh B. E., Hall N., Peters W. H., Roelofs R., Boleij A., Tjalsma H..( 2011;). Towards the human colorectal cancer microbiome. . PLoS One 6: e20447. [CrossRef] [PubMed]
    [Google Scholar]
  55. Melkamu T., Qian X., Upadhyaya P., O'Sullivan M. G., Kassie F..( 2013;). Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation-driven lung cancer. . Vet Pathol 50: 895–902. [CrossRef] [PubMed]
    [Google Scholar]
  56. Meurman J. H..( 2010;). Oral microbiota and cancer. . J Oral Microbiol 2: 1–10. [CrossRef]
    [Google Scholar]
  57. Meza García G., Muñoz Ibarra J. J., Páez Valencia C., Cruz Legorreta B., Aldape Barrios B..( 2009;). [Oral cavity squamous cells carcinoma, 5 years experience in a third level social assistence center, in Mexico city]. . Avances Odontoestomatol 25: 19–28 (in Spanish). [CrossRef]
    [Google Scholar]
  58. Michaud D. S., Joshipura K., Giovannucci E., Fuchs C. S..( 2007;). A prospective study of periodontal disease and pancreatic cancer in US male health professionals. . J Natl Cancer Inst 99: 171–175. [CrossRef] [PubMed]
    [Google Scholar]
  59. Minemura M., Shimizu Y..( 2015;). Gut microbiota and liver diseases. . World J Gastroenterol 21: 1691–1702. [CrossRef] [PubMed]
    [Google Scholar]
  60. Mitsuhashi K., Nosho K., Sukawa Y., Matsunaga Y., Ito M., Kurihara H., Kanno S., Igarashi H., Naito T. et al.( 2015;). Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. . Oncotarget 6: 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  61. Morens D. M., Fauci A. S..( 2013;). Emerging infectious diseases: threats to human health and global stability. . PLoS Pathog 9: e1003467. [CrossRef] [PubMed]
    [Google Scholar]
  62. Nagy K. N., Sonkodi I., Szöke I., Nagy E., Newman H. N..( 1998;). The microflora associated with human oral carcinomas. . Oral Oncol 34: 304–308. [CrossRef] [PubMed]
    [Google Scholar]
  63. Ochi A., Nguyen A. H., Bedrosian A. S., Mushlin H. M., Zarbakhsh S., Barilla R., Zambirinis C. P., Fallon N. C., Rehman A. et al.( 2012;). Myd88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. . J Exp Med 209: 1671–1687. [CrossRef] [PubMed]
    [Google Scholar]
  64. Ohtani N..( 2015;). Microbiome and cancer. . Semin Immunopathol 37: 65–72. [CrossRef] [PubMed]
    [Google Scholar]
  65. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O..( 2007;). Development of the human infant intestinal microbiota. . PLoS Biol 5: 1556–1573. [CrossRef]
    [Google Scholar]
  66. Perez-Chanona E., Trinchieri G..( 2016;). The role of microbiota in cancer therapy. . Curr Opin Immunol 39: 75–81. [CrossRef] [PubMed]
    [Google Scholar]
  67. Petersen C., Round J. L..( 2014;). Defining dysbiosis and its influence on host immunity and disease. . Cell Microbiol 16: 1024–1033. [CrossRef] [PubMed]
    [Google Scholar]
  68. Pevsner-Fischer M., Tuganbaev T., Meijer M., Zhang S. H., Zeng Z. R., Elinav E..( 2016;). Role of the microbiome in non-gastrointestinal cancers. . World J Clin Oncol 7: 200–214. [CrossRef] [PubMed]
    [Google Scholar]
  69. Plottel C. S., Blaser M. J..( 2011;). Microbiome and malignancy. . Cell Host Microbe 10: 324–335. [CrossRef] [PubMed]
    [Google Scholar]
  70. Pragman A. A., Kim H. B., Reilly C. S., Wendt C., Isaacson R. E..( 2012;). The lung microbiome in moderate and severe chronic obstructive pulmonary disease. . PLoS One 7: e47305. [CrossRef] [PubMed]
    [Google Scholar]
  71. Pushalkar S., Mane S. P., Ji X., Li Y., Evans C., Crasta O. R., Morse D., Meagher R., Singh A., Saxena D..( 2011;). Microbial diversity in saliva of oral squamous cell carcinoma. . FEMS Immunol Med Microbiol 61: 269–277. [CrossRef] [PubMed]
    [Google Scholar]
  72. Rajilić-Stojanović M..( 2013;). Function of the microbiota. . Best Pract Res Clin Gastroenterol 27: 5–16. [CrossRef] [PubMed]
    [Google Scholar]
  73. Ridlon J. M., Kang D. J., Hylemon P. B..( 2006;). Bile salt biotransformations by human intestinal bacteria. . J Lipid Res 47: 241–259. [CrossRef] [PubMed]
    [Google Scholar]
  74. Roh Y. S., Seki E..( 2013;). Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. . J Gastroenterol Hepatol 28: 38–42. [CrossRef] [PubMed]
    [Google Scholar]
  75. Rubinstein M. R., Wang X., Liu W., Hao Y., Cai G., Han Y. W., Yiping H..( 2013;). Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. . Cell Host Microbe 14: 195–206. [CrossRef] [PubMed]
    [Google Scholar]
  76. Schippa S., Conte M..( 2014;). Dysbiotic events in gut microbiota: impact on human health. . Nutrients 6: 5786–5805. [CrossRef]
    [Google Scholar]
  77. Schmidt B. L., Kuczynski J., Bhattacharya A., Huey B., Corby P. M., Queiroz E. L., Nightingale K., Kerr A. R., DeLacure M. D. et al.( 2014;). Changes in abundance of oral microbiota associated with oral cancer. . PLoS One 9: e98741. [CrossRef] [PubMed]
    [Google Scholar]
  78. Schwabe R. F., Jobin C..( 2013;). The microbiome and cancer. . Nat Rev Cancer 13: 800–812. [CrossRef] [PubMed]
    [Google Scholar]
  79. Sears C. L., Garrett W. S..( 2014;). Microbes, microbiota, and colon cancer. . Cell Host Microbe 15: 295–305. [CrossRef] [PubMed]
    [Google Scholar]
  80. Sheflin A. M., Whitney A. K., Weir T. L..( 2014;). Cancer-promoting effects of microbial dysbiosis. . Curr Oncol Rep 16: 406. [CrossRef] [PubMed]
    [Google Scholar]
  81. Sze M. A., Hogg J. C., Sin D. D..( 2014;). Bacterial microbiome of lungs in COPD. . Int J COPD 9: 229–238.
    [Google Scholar]
  82. Tezal M., Sullivan M. A., Hyland A., Marshall J. R., Stoler D., Reid M. E., Loree T. R., Rigual N. R., Merzianu M. et al.( 2009;). Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. . Cancer Epidemiol Biomarkers Prev 18: 2406–2412. [CrossRef] [PubMed]
    [Google Scholar]
  83. Tsiaoussis G., Assimakopoulos S. F., Tsamandas A. C., Triantos C. K., Thomopoulos K. C..( 2015;). Intestinal barrier dysfunction in cirrhosis: current concepts in pathophysiology and clinical implications. . World J Hepatol 7: 2058–2068. [CrossRef] [PubMed]
    [Google Scholar]
  84. Turnbaugh P. J., Ley R. E., Hamady M., Fraser-liggett C., Knight R., Gordon J. I.( 2007;). The Human Microbiome Project: exploring the microbial part of ourselves in a changing world. . Nature 449: 804–810.[Crossref]
    [Google Scholar]
  85. Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillère R., Hannani D., Enot D. P., Pfirschke C., Engblom C. et al.( 2013;). The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. . Science 342: 971–976. [CrossRef] [PubMed]
    [Google Scholar]
  86. Vineis P., Schatzkin A., Potter J. D..( 2010;). Models of carcinogenesis: an overview. . Carcinogenesis 31: 1703–1709. [CrossRef] [PubMed]
    [Google Scholar]
  87. Vizcaino M., Crawford J. M..( 2015;). The colibactin warhead crosslinks DNA. . Nat Chem 7: 411–417. [CrossRef] [PubMed]
    [Google Scholar]
  88. Walsh C. J., Guinane C. M., O'Toole P. W., Cotter P. D..( 2014;). Beneficial modulation of the gut microbiota. . FEBS Lett 588: 4120–4130. [CrossRef] [PubMed]
    [Google Scholar]
  89. Wang L., Ganly I..( 2014;). The oral microbiome and oral cancer. . Clin Lab Med 34: 711–719. [CrossRef] [PubMed]
    [Google Scholar]
  90. Wu S., Rhee K. J., Albesiano E., Rabizadeh S., Wu X., Yen H. R., Huso D. L., Brancati F. L., Wick E. et al.( 2009;). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. . Nat Med 15: 1016–1022. [CrossRef] [PubMed]
    [Google Scholar]
  91. Yoshimoto S., Loo T. M., Atarashi K., Kanda H., Sato S., Oyadomari S., Iwakura Y., Oshima K., Morita H. et al.( 2013;). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. . Nature 499: 97–101. [CrossRef] [PubMed]
    [Google Scholar]
  92. Yu L. X., Yan H. X., Liu Q., Yang W., Wu H. P., Dong W., Tang L., Lin Y., He Y. Q. et al.( 2010;). Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. . Hepatology 52: 1322–1333. [CrossRef] [PubMed]
    [Google Scholar]
  93. Yu G., Gail M. H., Consonni D., Carugno M., Humphrys M., Pesatori A. C., Caporaso N. E., Goedert J. J., Ravel J. et al.( 2016;). Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. . Genome Biol 17: 163. [CrossRef] [PubMed]
    [Google Scholar]
  94. Zackular J. P., Baxter N. T., Iverson K. D., Sadler W. D., Petrosino J. F., Chen G. Y., Schloss P. D..( 2013;). The gut microbiome modulates colon tumorigenesis. . MBio 4: e00692-12. [CrossRef] [PubMed]
    [Google Scholar]
  95. Zambirinis C. P., Pushalkar S., Saxena D., Miller G..( 2014;). Pancreatic cancer, inflammation, and microbiome. . Cancer J 20: 195–202. [CrossRef] [PubMed]
    [Google Scholar]
  96. Zeller G., Tap J., Voigt A. Y., Sunagawa S., Kultima J. R., Costea P. I., Amiot A., Böhm J., Brunetti F. et al.( 2014;). Potential of fecal microbiota for early-stage detection of colorectal cancer. . Mol Syst Biol 10: 766. [CrossRef] [PubMed]
    [Google Scholar]
  97. Zong A., Cao H., Wang F..( 2012;). Anticancer polysaccharides from natural resources: a review of recent research. . Carbohydr Polym 90: 1395–1410. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000371
Loading
/content/journal/jmm/10.1099/jmm.0.000371
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error