1887

Abstract

In order to develop novel host/pathogen real-time PCR assays for routine diagnostic use, early gene expression patterns from both Epstein–Barr virus (EBV) and Raji cells were examined after inducing the lytic life cycle using 12--tetradecanoyl-13-phorbol ester and sodium butyrate. Real-time PCR identified several highly induced (>90-fold) EBV lytic genes over a 48 h time course during the lytic induction phase. Latent genes were induced at low levels during this phase. The cellular response to lytic viral replication is poorly understood. Whole human genome microarray analysis identified 113 cellular genes regulated twofold or more by EBV, including 63 upregulated and 46 downregulated genes, over a 24 h time course post-induction. The most upregulated gene was , a chitinase-3-like 1 protein (18.1-fold; <0.0084), and the most downregulated gene was , a thymidylate synthetase (−7.6-fold). Gene Ontology enrichment analysis using MetaCore software revealed cell cycle (core), cell cycle (role of anaphase-promoting complex) in cell cycle regulation) and lymphatic diseases as the most significantly represented biological network processes, canonical pathways and disease biomarkers, respectively. Chemotaxis, DNA damage and inflammation (IL-4 signalling) together with lymphoproliferative disorders and non-Hodgkin’s lymphoma were significantly represented biological processes and disease biomarkers.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000352
2016-11-16
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/11/1243.html?itemId=/content/journal/jmm/10.1099/jmm.0.000352&mimeType=html&fmt=ahah

References

  1. Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A.. 1998; EBV persistence in memory B cells in vivo. Immunity9:395–404 [CrossRef][PubMed]
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C. et al. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature310:207–211 [CrossRef][PubMed]
    [Google Scholar]
  3. Bergbauer M., Kalla M., Schmeinck A., Göbel C., Rothbauer U., Eck S., Benet-Pagès A., Strom T. M., Hammerschmidt W.. 2010; CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog6: e1001114 [CrossRef][PubMed]
    [Google Scholar]
  4. Brink A. A., Dukers D. F., van den Brule A. J., Oudejans J. J., Middeldorp J. M., Meijer C. J., Jiwa M.. 1997; Presence of Epstein-Barr virus latency type III at the single cell level in post-transplantation lymphoproliferative disorders and AIDS related lymphomas. J Clin Pathol50:911–918 [CrossRef][PubMed]
    [Google Scholar]
  5. Brooks L. A., Lear A. L., Young L. S., Rickinson A. B.. 1993; Transcripts from the Epstein-Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol67:3182–3190[PubMed]
    [Google Scholar]
  6. Cahir-McFarland E. D., Carter K., Rosenwald A., Giltnane J. M., Henrickson S. E., Staudt L. M., Kieff E.. 2004; Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein-Barr virus latency III-infected cells. J Virol78:4108–4119 [CrossRef][PubMed]
    [Google Scholar]
  7. Cai Q., Chen K., Young K. H.. 2015; Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorders. Exp Mol Med47:e133 [CrossRef][PubMed]
    [Google Scholar]
  8. Chang Y. H., Lee C. P., Su M. T., Wang J. T., Chen J. Y., Lin S. F., Tsai C. H., Hsieh M. J., Takada K., Chen M. R.. 2012; Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality. PLoS One7:e39217 [CrossRef][PubMed]
    [Google Scholar]
  9. Chevallier-Greco A., Manet E., Chavrier P., Mosnier C., Daillie J., Sergeant A.. 1986; Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J5:3243–3249[PubMed]
    [Google Scholar]
  10. Concha M., Wang X., Cao S., Baddoo M., Fewell C., Lin Z., Hulme W., Hedges D., McBride J., Flemington E. K.. 2012; Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq. J Virol86:1458–1467 [CrossRef][PubMed]
    [Google Scholar]
  11. Crawford D. H.. 2001; Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci356:461–473 [CrossRef][PubMed]
    [Google Scholar]
  12. Decaussin G., Leclerc V., Ooka T.. 1995; The lytic cycle of Epstein-Barr virus in the nonproducer Raji line can be rescued by the expression of a 135-kilodalton protein encoded by the BALF2 open reading frame. J Virol69:7309–7314[PubMed]
    [Google Scholar]
  13. Eurich K., Segawa M., Toei-Shimizu S., Mizoguchi E.. 2009; Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells. World J Gastroenterol15:5249–5259 [CrossRef][PubMed]
    [Google Scholar]
  14. Fields B. N., Knipe D. M., Howley P. M.. 2007; Fields' Virology, 5th edn. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins;
    [Google Scholar]
  15. Forte E., Luftig M. A.. 2011; The role of microRNAs in Epstein-Barr virus latency and lytic reactivation. Microbes Infect13:1156–1167 [CrossRef][PubMed]
    [Google Scholar]
  16. Gonnella R., Farina A., Santarelli R., Raffa S., Feederle R., Bei R., Granato M., Modesti A., Frati L. et al. 2005; Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol79:3713–3727 [CrossRef][PubMed]
    [Google Scholar]
  17. Gruffat H., Kadjouf F., Mariamé B., Manet E.. 2012; The Epstein-Barr virus BcRF1 gene product is a TBP-like protein with an essential role in late gene expression. J Virol86:6023–6032 [CrossRef][PubMed]
    [Google Scholar]
  18. Guo Q., Qian L., Guo L., Shi M., Chen C., Lv X., Yu M., Hu M., Jiang G. et al. 2010a; Transactivators Zta and Rta of Epstein-Barr virus promote G0/G1 to S transition in Raji cells: a novel relationship between lytic virus and cell cycle. Mol Immunol47:1783–1792 [CrossRef][PubMed]
    [Google Scholar]
  19. Guo Y., Zhang X., Yang M., Miao X., Shi Y., Yao J., Tan W., Sun T., Zhao D. et al. 2010b; Functional evaluation of missense variations in the human MAD1L1 and MAD2L1 genes and their impact on susceptibility to lung cancer. J Med Genet47:616–622 [CrossRef][PubMed]
    [Google Scholar]
  20. Hatfull G., Bankier A. T., Barrell B. G., Farrell P. J.. 1988; Sequence analysis of Raji Epstein-Barr virus DNA. Virology164:334–340 [CrossRef][PubMed]
    [Google Scholar]
  21. Hertle M. L., Popp C., Petermann S., Maier S., Kremmer E., Lang R., Mages J., Kempkes B.. 2009; Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes. PLoS Pathog5: e1000506 [CrossRef][PubMed]
    [Google Scholar]
  22. Hong G. K., Gulley M. L., Feng W. H., Delecluse H. J., Holley-Guthrie E., Kenney S. C.. 2005; Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol79:13993–14003 [CrossRef][PubMed]
    [Google Scholar]
  23. Hopwood P. A., Brooks L., Parratt R., Hunt B. J., Bokhari M., Thomas J. A., Yacoub M., Crawford D. H., Maria B. et al. 2002; Persistent Epstein-Barr virus infection: unrestricted latent and lytic viral gene expression in healthy immunosuppressed transplant recipients. Transplantation74:194–202 [CrossRef][PubMed]
    [Google Scholar]
  24. Kallakury B., Sheehan C. E., Ambros R. A., Fisher H. A., Kaufman R. P., Ross J. S.. 1997; The prognostic significance of p34cdc2 and cyclin D1 protein expression in prostate adenocarcinoma. Cancer80:753–763 [CrossRef][PubMed]
    [Google Scholar]
  25. Kristiansen H., Gad H. H., Eskildsen-Larsen S., Despres P., Hartmann R.. 2011; The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res31:41–47 [CrossRef][PubMed]
    [Google Scholar]
  26. Kudoh A., Fujita M., Kiyono T., Kuzushima K., Sugaya Y., Izuta S., Nishiyama Y., Tsurumi T.. 2003; Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J Virol77:851–861 [CrossRef][PubMed]
    [Google Scholar]
  27. Kudoh A., Fujita M., Zhang L., Shirata N., Daikoku T., Sugaya Y., Isomura H., Nishiyama Y., Tsurumi T.. 2005; Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J Biol Chem280:8156–8163 [CrossRef][PubMed]
    [Google Scholar]
  28. Küppers R.. 2003; B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol3:801–812 [CrossRef][PubMed]
    [Google Scholar]
  29. Laux G., Freese U. K., Fischer R., Polack A., Kofler E., Bornkamm G. W.. 1988; TPA-inducible Epstein-Barr virus genes in Raji cells and their regulation. Virology162:503–507 [CrossRef][PubMed]
    [Google Scholar]
  30. Lee K. H., Choi E. Y., Kim M. K., Lee S. H., Jang B., Kim T. N., Kim S. W., Kim S. W., Song S. K. et al. 2010; Hepatoma-derived growth factor regulates the bad-mediated apoptotic pathway and induction of vascular endothelial growth factor in stomach cancer cells. Oncol Res19:67–76 [CrossRef][PubMed]
    [Google Scholar]
  31. Liu Z., Falo L. D., You Z.. 2011; Knockdown of HMGB1 in tumor cells attenuates their ability to induce regulatory T cells and uncovers naturally acquired CD8 T cell-dependent antitumor immunity. J Immunol187:118–125 [CrossRef][PubMed]
    [Google Scholar]
  32. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  33. Lu F., Wikramasinghe P., Norseen J., Tsai K., Wang P., Showe L., Davuluri R. V., Lieberman P. M.. 2010; Genome-wide analysis of host-chromosome binding sites for Epstein-Barr virus nuclear antigen 1 (EBNA1). Virol J7:262 [CrossRef][PubMed]
    [Google Scholar]
  34. Lucchesi W., Brady G., Dittrich-Breiholz O., Kracht M., Russ R., Farrell P. J.. 2008; Differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2. J Virol82:7456–7466 [CrossRef][PubMed]
    [Google Scholar]
  35. Malkas L. H., Herbert B. S., Abdel-Aziz W., Dobrolecki L. E., Liu Y., Agarwal B., Hoelz D., Badve S., Schnaper L. et al. 2006; A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proc Natl Acad Sci U S A103:19472–19477 [CrossRef][PubMed]
    [Google Scholar]
  36. Manenti G., Galbiati F., Pettinicchio A., Spinola M., Piconese S., Leoni V. P., Conti B., Ravagnani F., Incarbone M. et al. 2006; A V141L polymorphism of the human LRMP gene is associated with survival of lung cancer patients. Carcinogenesis27:1386–1390 [CrossRef][PubMed]
    [Google Scholar]
  37. Minarovits J., Hu L. F., Marcsek Z., Minarovits-Kormuta S., Klein G., Ernberg I.. 1992; RNA polymerase III-transcribed EBER 1 and 2 transcription units are expressed and hypomethylated in the major Epstein-Barr virus-carrying cell types. J Gen Virol73:1687–1692 [CrossRef][PubMed]
    [Google Scholar]
  38. Myung D. S., Park Y. L., Kim N., Chung C. Y., Park H. C., Kim J. S., Cho S. B., Lee W. S., Lee J. H. et al. 2014; Expression of early growth response-1 in colorectal cancer and its relation to tumor cell proliferation and apoptosis. Oncol Rep31:788–794 [CrossRef][PubMed]
    [Google Scholar]
  39. Nakayama T., Hieshima K., Nagakubo D., Sato E., Nakayama M., Kawa K., Yoshie O.. 2004; Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein-Barr virus. J Virol78:1665–1674 [CrossRef][PubMed]
    [Google Scholar]
  40. Neuhierl B., Delecluse H. J.. 2006; The Epstein-Barr virus BMRF1 gene is essential for lytic virus replication. J Virol80:5078–5081 [CrossRef][PubMed]
    [Google Scholar]
  41. Nutter L. M., Grill S. P., Li J. S., Tan R. S., Cheng Y. C.. 1987; Induction of virus enzymes by phorbol esters and n-butyrate in Epstein-Barr virus genome-carrying Raji cells. Cancer Res47:4407–4412[PubMed]
    [Google Scholar]
  42. Pan Y. R., Fang C. Y., Chang Y. S., Chang H. Y.. 2005; Analysis of Epstein-Barr virus gene expression upon phorbol ester and hydroxyurea treatment by real-time quantitative PCR. Arch Virol150:755–770 [CrossRef][PubMed]
    [Google Scholar]
  43. Parkhitko A., Myachina F., Morrison T. A., Hindi K. M., Auricchio N., Karbowniczek M., Wu J. J., Finkel T., Kwiatkowski D. J. et al. 2011; Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci U S A108:12455–12460 [CrossRef][PubMed]
    [Google Scholar]
  44. Peng L., Yanjiao M., Ai-guo W., Pengtao G., Jianhua L., Ju Y., Hongsheng O., Xichen Z.. 2011; A fine balance between CCNL1 and TIMP1 contributes to the development of breast cancer cells. Biochem Biophys Res Commun409:344–349 [CrossRef][PubMed]
    [Google Scholar]
  45. Rea D., Delecluse H.-J., Hamilton-Dutoit S. J., Marelle L., Joab I., Edelman L., Finet J.-F., Raphael M.. French Study Group of Pathology for HIV-associated Tumors 1994a; Epstein-Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin's lymphomas. Ann Oncol5:S113–S116 [CrossRef]
    [Google Scholar]
  46. Rea D., Fourcade C., Leblond V., Rowe M., Joab I., Edelman L., Bitker M. O., Gandjbakhch I., Suberbielle C. et al. 1994b; Patterns of Epstein-Barr virus latent and replicative gene expression in Epstein-Barr virus B cell lymphoproliferative disorders after organ transplantation. Transplantation58:317–324[CrossRef]
    [Google Scholar]
  47. Rodig S. J., Abramson J. S., Pinkus G. S., Treon S. P., Dorfman D. M., Dong H. Y., Shipp M. A., Kutok J. L.. 2006; Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res12:7174–7179 [CrossRef][PubMed]
    [Google Scholar]
  48. Salvant B. S., Fortunato E. A., Spector D. H.. 1998; Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J Virol72:3729–3741[PubMed]
    [Google Scholar]
  49. Shin S. H., Park S. Y., Kang G. H.. 2013; Down-regulation of dual-specificity phosphatase 5 in gastric cancer by promoter CpG island hypermethylation and its potential role in carcinogenesis. Am J Pathol182:1275–1285 [CrossRef][PubMed]
    [Google Scholar]
  50. Smith P. R., de Jesus O., Turner D., Hollyoake M., Karstegl C. E., Griffin B. E., Karran L., Wang Y., Hayward S. D., Farrell P. J.. 2000; Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus. J Virol74:3082–3092 [CrossRef][PubMed]
    [Google Scholar]
  51. Spender L. C., Lucchesi W., Bodelon G., Bilancio A., Karstegl C. E., Asano T., Dittrich-Breiholz O., Kracht M., Vanhaesebroeck B., Farrell P. J.. 2006; Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction of the p55alpha regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J Gen Virol87:2859–2867 [CrossRef][PubMed]
    [Google Scholar]
  52. Tejpar S., Bertagnolli M., Bosman F., Lenz H. J., Garraway L., Waldman F., Warren R., Bild A., Collins-Brennan D. et al. 2010; Prognostic and predictive biomarkers in resected colon cancer: current status and future perspectives for integrating genomics into biomarker discovery. Oncologist15:390–404 [CrossRef][PubMed]
    [Google Scholar]
  53. Tsukamoto Y., Uchida T., Karnan S., Noguchi T., Nguyen L. T., Tanigawa M., Takeuchi I., Matsuura K., Hijiya N. et al. 2008; Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. J Pathol216:471–482 [CrossRef][PubMed]
    [Google Scholar]
  54. Tsurumi T.. 2001; EBV replication enzymes. Curr Top Microbiol Immunol258:65–87[PubMed]
    [Google Scholar]
  55. Uchihara J. N., Krensky A. M., Matsuda T., Kawakami H., Okudaira T., Masuda M., Ohta T., Takasu N., Mori N.. 2005; Transactivation of the CCL5/RANTES gene by Epstein-Barr virus latent membrane protein 1. Int J Cancer114:747–755 [CrossRef][PubMed]
    [Google Scholar]
  56. Vockerodt M., Pinkert D., Smola-Hess S., Michels A., Ransohoff R. M., Tesch H., Kube D.. 2005; The Epstein-Barr virus oncoprotein latent membrane protein 1 induces expression of the chemokine IP-10: importance of mRNA half-life regulation. Int J Cancer114:598–605 [CrossRef][PubMed]
    [Google Scholar]
  57. Young L. S., Rickinson A. B.. 2004; Epstein-Barr virus: 40 years on. Nat Rev Cancer4:757–768 [CrossRef][PubMed]
    [Google Scholar]
  58. Yuan J., Cahir-McFarland E., Zhao B., Kieff E.. 2006; Virus and cell RNAs expressed during Epstein-Barr virus replication. J Virol80:2548–2565 [CrossRef][PubMed]
    [Google Scholar]
  59. Zhao B., Maruo S., Cooper A., Chase M. R., Johannsen E., Kieff E., Cahir-McFarland E.. 2006; RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl Acad Sci U S A103:1900–1905 [CrossRef][PubMed]
    [Google Scholar]
  60. Zhao B., Keerthivasan G., Mei Y., Yang J., McElherne J., Wong P., Doench J. G., Feng G., Root D. E., Ji P.. 2014; Targeted shRNA screening identified critical roles of pleckstrin-2 in erythropoiesis. Haematologica99:1157–1167 [CrossRef][PubMed]
    [Google Scholar]
  61. de Jesus O., Smith P. R., Spender L. C., Elgueta Karstegl C., Niller H. H., Huang D., Farrell P. J.. 2003; Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol84:1443–1450 [CrossRef][PubMed]
    [Google Scholar]
  62. van Beek J., Brink A. A., Vervoort M. B., van Zijp M. J., Meijer C. J., van den Brule A. J., Middeldorp J. M.. 2003; In vivo transcription of the Epstein-Barr virus (EBV) BamHI-A region without associated in vivo BARF0 protein expression in multiple EBV-associated disorders. J Gen Virol84:2647–2659 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000352
Loading
/content/journal/jmm/10.1099/jmm.0.000352
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error