1887

Abstract

Crohn disease (CD) is a chronic inflammatory condition primarily affecting the gastro-intestinal tract and is characterized by reduced bacterial diversity. The exact cause of disease is unknown; however, evidence suggests that several components, including microbiota, may contribute to the underlying pathology and disease development. Perturbation of the host–microbe commensal relationship is considered the main driving force of tissue destruction and pathological changes seen in CD. Several putative bacterial pathogens including species from , and are postulated in the aetiology of CD. However, to date, no strong evidence supports a single bacterium contributing overall to CD pathogenesis. Alternatively, dysbiosis or bacterial imbalance is more widely accepted as a leading factor in the disrupted host–immune system cross-talk resulting in subsequent intestinal inflammation. Depletion of symbiont microbes including , and , in conjunction with an increase in pathobiont microbes from and Enterobacteria, is a striking feature observed in CD. No single factor has been identified as driving this dysbiosis, although diet, antibiotic exposure and possible early life events in presence of underlying genetic susceptibility may contribute. The aim of this review is to highlight the current accumulating literature on the proposed role of bacteria in the pathogenesis of CD.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000331
2016-10-18
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1049.html?itemId=/content/journal/jmm/10.1099/jmm.0.000331&mimeType=html&fmt=ahah

References

  1. Abraham C., Medzhitov R.. 2011; Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology140:1729–1737 [CrossRef][PubMed]
    [Google Scholar]
  2. Alexander K. L., Targan S. R., Elson C. O.. 2014; Microbiota activation and regulation of innate and adaptive immunity. Immunol Rev260:206–220 [CrossRef][PubMed]
    [Google Scholar]
  3. Alhagamhmad M. H., Day A. S., Lemberg D. A., Leach S. T.. 2012; An update of the role of nutritional therapy in the management of Crohn's disease. J Gastroenterol47:872–882 [CrossRef][PubMed]
    [Google Scholar]
  4. Alhagamhmad M. H., Leach S. T., Lemberg D. A., Day A. S.. 2015; Changing patterns in the epidemiology of Crohn disease. J Gastroenterol Hepatol Res 4:1805–1809[CrossRef]
    [Google Scholar]
  5. Amre D. K., Mack D. R., Israel D., Krupoves A., Costea I., Lambrette P., Grimard G., Dong J., Levy E.. 2012; NELL1, NCF4, and FAM92B genes are not major susceptibility genes for Crohn's disease in Canadian children and young adults. Inflamm Bowel Dis18:529–535 [CrossRef][PubMed]
    [Google Scholar]
  6. Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., Fukuda S., Saito T., Narushima S. et al. 2013; Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature500:232–236 [CrossRef][PubMed]
    [Google Scholar]
  7. Bartels L. E., Jepsen P., Christensen L. A., Gerdes L. U., Vilstrup H., Dahlerup J. F.. 2016; Diagnosis of Helicobacter pylori infection is associated with lower prevalence and subsequent incidence of Crohn’s disease. J Crohns Colitis10:443–448[CrossRef]
    [Google Scholar]
  8. Bernstein C. N., Wang M. H., Sargent M., Brant S. R., Collins M. T.. 2007; Testing the interaction between NOD-2 status and serological response to Mycobacterium paratuberculosis in cases of inflammatory bowel disease. J Clin Microbiol45:968–971 [CrossRef][PubMed]
    [Google Scholar]
  9. Biedermann L., Brülisauer K., Zeitz J., Frei P., Scharl M., Vavricka S. R., Fried M., Loessner M. J., Rogler G. et al. 2014; Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm Bowel Dis20:1496–1501 [CrossRef][PubMed]
    [Google Scholar]
  10. Brant S. R.. 2013; Promises, delivery, and challenges of inflammatory bowel disease risk gene discovery. Clin Gastroenterol Hepatol11:22–26 [CrossRef][PubMed]
    [Google Scholar]
  11. Brazil J. C., Louis N. A., Parkos C. A.. 2013; The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflamm Bowel Dis19:1556–1565 [CrossRef][PubMed]
    [Google Scholar]
  12. Brown K., DeCoffe D., Molcan E., Gibson D. L.. 2012; Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients4:1095–1119 [CrossRef][PubMed]
    [Google Scholar]
  13. Buttó L. F., Schaubeck M., Haller D.. 2015; Mechanisms of microbe-host interaction in Crohn's disease: dysbiosis vs. pathobiont selection. Front Immunol6:1–20 [CrossRef][PubMed]
    [Google Scholar]
  14. Buttó L. F., Haller D.. 2016; Dysbiosis in intestinal inflammation: cause or consequence. Int J Med Microbiol306:302–309 [CrossRef][PubMed]
    [Google Scholar]
  15. Cao A. T., Yao S., Gong B., Elson C. O., Cong Y.. 2012; Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol189:4666–4673 [CrossRef][PubMed]
    [Google Scholar]
  16. Carbonero F., Zoetendal E. G., Ou J., O'Keefe S. J., Gaskins H. R.. 2012; Traditional African and Western diets select distinct phylogenetic and functional colonic microbiota among different populations. Gastroenterology142:S641[CrossRef]
    [Google Scholar]
  17. Casen C., Vebø H., Sekelja M., Hegge F., Karlsson M., Ciemniejewska E., Dzankovic S., Frøyland C., Nestestog R. et al. 2015; Deviations in human gut microbiota: a novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment Pharmacol Therap42:71–83 [CrossRef]
    [Google Scholar]
  18. Chamaillard M., Radulovic K.. 2016; Defining dysbiosis threatens Koch's postulates and current dogma on the role of Paneth cells in Crohn's disease. Gut65:190–191 [CrossRef][PubMed]
    [Google Scholar]
  19. Chow J., Mazmanian S. K.. 2010; A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe7:265–276 [CrossRef][PubMed]
    [Google Scholar]
  20. Christophi G. P., Rong R., Holtzapple P. G., Massa P. T., Landas S. K.. 2012; Immune markers and differential signaling networks in ulcerative colitis and Crohn's disease. Inflamm Bowel Dis18:2342–2356 [CrossRef][PubMed]
    [Google Scholar]
  21. Chu H., Khosravi A., Kusumawardhani I. P., Kwon A. H., Vasconcelos A. C., Cunha L. D., Mayer A. E., Shen Y., Wu W. L. et al. 2016; Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science352:1116–1120 [CrossRef][PubMed]
    [Google Scholar]
  22. Chung H., Pamp S. J., Hill J. A., Surana N. K., Edelman S. M., Troy E. B., Reading N. C., Villablanca E. J., Wang S. et al. 2012; Gut immune maturation depends on colonization with a host- specific microbiota. Cell149:1578–1593 [CrossRef][PubMed]
    [Google Scholar]
  23. Claesson M. J., Jeffery I. B., Conde S., Power S. E., O'Connor E. M., Cusack S., Harris H. M., Coakley M., Lakshminarayanan B. et al. 2012; Gut microbiota composition correlates with diet and health in the elderly. Nature488:178–184 [CrossRef][PubMed]
    [Google Scholar]
  24. Clemente J. C., Ursell L. K., Parfrey L. W., Knight R.. 2012; The impact of the gut microbiota on human health: an integrative view. Cell148:1258–1270 [CrossRef][PubMed]
    [Google Scholar]
  25. Cocolin L., Alessandria V., Dolci P., Gorra R., Rantsiou K.. 2013; Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int J Food Microbiol167:29–43 [CrossRef][PubMed]
    [Google Scholar]
  26. Cuthbert A. P., Fisher S. A., Mirza M. M., King K., Hampe J., Croucher P. J., Mascheretti S., Sanderson J., Forbes A. et al. 2002; The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology122:867–874 [CrossRef][PubMed]
    [Google Scholar]
  27. Dalton J. P., Desmond A., Shanahan F., Hill C.. 2014; Detection of Mycobacterium avium subspecies paratuberculosis in patients with Crohn's disease is unrelated to the presence of single nucleotide polymorphisms rs2241880 (ATG16L1) and rs10045431 (IL12B). Med Microbiol Immunol203:195–205 [CrossRef][PubMed]
    [Google Scholar]
  28. Darfeuille-Michaud A., Boudeau J., Bulois P., Neut C., Glasser A. L., Barnich N., Bringer M. A., Swidsinski A., Beaugerie L. et al. 2004; High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology127:412–421 [CrossRef][PubMed]
    [Google Scholar]
  29. De Cruz P., Kang S., Wagner J., Buckley M., Sim W. H., Prideaux L., Lockett T., McSweeney C., Morrison M. et al. 2015; Association between specific mucosa-associated microbiota in Crohn's disease at the time of resection and subsequent disease recurrence: a pilot study. J Gastroenterol Hepatol30:268–278 [CrossRef][PubMed]
    [Google Scholar]
  30. De Hertogh G., Aerssens J., Geboes K. P., Geboes K.. 2008; Evidence for the involvement of infectious agents in the pathogenesis of Crohn's disease. World J Gastroenterol14:845–852 [CrossRef][PubMed]
    [Google Scholar]
  31. De Zoeten E. F., Fuss I. J.. 2013; Cytokines and inflammatory bowel disease. Pediatric Inflammatory Bowel Disease pp25–33 Edited by Mamula P., Markowitz J. E., Baldassano R. N.. Springer:[CrossRef]
    [Google Scholar]
  32. Dethlefsen L., Relman D. A.. 2011; Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A108:4554–4561 [CrossRef][PubMed]
    [Google Scholar]
  33. Devkota S., Chang E. B.. 2013; Nutrition, microbiomes, and intestinal inflammation. Curr Opin Gastroenterol29:603–607 [CrossRef][PubMed]
    [Google Scholar]
  34. Dickson I.. 2016; Crohn's disease: impaired bacterial clearance in IBD. Nat Rev Gastroenterol Hepatol13:251 [CrossRef][PubMed]
    [Google Scholar]
  35. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A.. 2005; Diversity of the human intestinal microbial flora. Science308:1635–1638 [CrossRef][PubMed]
    [Google Scholar]
  36. Ehsani L., Reddy S. C., Mosunjac M., Kraft C. S., Guarner J.. 2015; Fatal aortic pseudoaneurysm from disseminated Mycobacterium kansasii infection: case report. Hum Pathol46:467–470 [CrossRef][PubMed]
    [Google Scholar]
  37. El Aidy S., van den Bogert B., Kleerebezem M.. 2015; The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol32:14–20 [CrossRef][PubMed]
    [Google Scholar]
  38. Fallani M., Young D., Scott J., Norin E., Amarri S., Adam R., Aguilera M., Khanna S., Gil A. et al. 2010; Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr51:77–84 [CrossRef][PubMed]
    [Google Scholar]
  39. Fava F., Danese S.. 2011; Intestinal microbiota in inflammatory bowel disease: friend of foe?. World J Gastroenterol17:557–566 [CrossRef][PubMed]
    [Google Scholar]
  40. Favier C., Neut C., Mizon C., Cortot A., Colombel J. F., Mizon J.. 1997; Fecal beta-D-galactosidase production and Bifidobacteria are decreased in Crohn's disease. Dig Dis Sci42:817–822[PubMed][CrossRef]
    [Google Scholar]
  41. Fleming L. L., Floch M. H.. 1986; Digestion and absorption of fiber carbohydrate in the colon. Am J Gastroenterol81:507–511[PubMed]
    [Google Scholar]
  42. Flint H. J., Scott K. P., Louis P., Duncan S. H.. 2012; The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol9:577–589 [CrossRef][PubMed]
    [Google Scholar]
  43. Fournier B. M., Parkos C. A.. 2012; The role of neutrophils during intestinal inflammation. Mucosal Immunol5:354–366 [CrossRef][PubMed]
    [Google Scholar]
  44. Frank D. N., St Amand A. L., Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R.. 2007; Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A104:13780–13785 [CrossRef][PubMed]
    [Google Scholar]
  45. Frank D. N., Robertson C. E., Hamm C. M., Kpadeh Z., Zhang T., Chen H., Zhu W., Sartor R. B., Boedeker E. C. et al. 2011; Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis17:179–184 [CrossRef][PubMed]
    [Google Scholar]
  46. Frosali S., Pagliari D., Gambassi G., Landolfi R., Pandolfi F., Cianci R.. 2015; How the intricate interaction among toll-like receptors, microbiota, and intestinal immunity can influence gastrointestinal pathology. J Immunol Res2015:1–12[CrossRef]
    [Google Scholar]
  47. Fujimoto T., Imaeda H., Takahashi K., Kasumi E., Bamba S., Fujiyama Y., Andoh A.. 2013; Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol28:613–619 [CrossRef][PubMed]
    [Google Scholar]
  48. Golan L., Livneh-Kol A., Gonen E., Yagel S., Rosenshine I., Shpigel N. Y.. 2009; Mycobacterium avium paratuberculosis invades human small-intestinal goblet cells and elicits inflammation. J Infect Dis199:350–354 [CrossRef][PubMed]
    [Google Scholar]
  49. Greenbloom S. L., Steinhart A. H., Greenberg G. R.. 1997; Combination Ciprofloxacin and metronidazole for active Crohn’s disease. Can J Gastroenterol12:53–56 [CrossRef]
    [Google Scholar]
  50. Greenstein R. J.. 2003; Is Crohn's disease caused by a Mycobacterium. comparisons with leprosy, tuberculosis, and Johne's disease. Lan Infect Dis 3:507–514[CrossRef]
    [Google Scholar]
  51. Griffith J. W., Sokol C. L., Luster A. D.. 2014; Chemokines and chemokine receptors: positioning cells for host Defense and immunity. Ann Rev Immunol32:659–702 [CrossRef]
    [Google Scholar]
  52. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C., Wagendorp A. A., Klijn N., Bindels J. G., Welling G. W.. 2000; Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr30:61–67 [CrossRef][PubMed]
    [Google Scholar]
  53. Hashimoto T., Perlot T., Rehman A., Trichereau J., Ishiguro H., Paolino M., Sigl V., Hanada T., Hanada R. et al. 2012; ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature487:477–481 [CrossRef][PubMed]
    [Google Scholar]
  54. Hiergeist A., Gläsner J., Reischl U., Gessner A.. 2015; Analyses of intestinal microbiota: culture versus sequencing. ILAR J56:228–240 [CrossRef][PubMed]
    [Google Scholar]
  55. Hoffmann C., Dollive S., Grunberg S., Chen J., Li H., Wu G. D., Lewis J. D., Bushman F. D.. 2013; Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One8:e66019 [CrossRef][PubMed]
    [Google Scholar]
  56. Hold G. L., Smith M., Grange C., Watt E. R., El-Omar E. M., Mukhopadhya I.. 2014; Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years?. World J Gastroenterol20:1192–1210 [CrossRef][PubMed]
    [Google Scholar]
  57. Hooper L. V., Littman D. R., Macpherson A. J.. 2012; Interactions between the microbiota and the immune system. Science336:1268–1273 [CrossRef][PubMed]
    [Google Scholar]
  58. Hruz P., Zinkernagel A. S., Jenikova G., Botwin G. J., Hugot J. P., Karin M., Nizet V., Eckmann L.. 2009; NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation. Proc Natl Acad Sci U S A106:12873–12878 [CrossRef][PubMed]
    [Google Scholar]
  59. Ignacio A., Morales C. I., Câmara N. O., Almeida R. R.. 2016; Innate sensing of the gut microbiota: modulation of inflammatory and autoimmune diseases. Front Immunol7:1–11 [CrossRef][PubMed]
    [Google Scholar]
  60. Igor’V M., Andreev D. N.. 2014; Role of mutations in NOD2/CARD15, ATG16L1, and IRGM in the pathogenesis of Crohn's disease. Int J Biomed1:7–10
    [Google Scholar]
  61. Ivanov I. I., Atarashi K., Manel N., Brodie E. L., Shima T., Karaoz U., Wei D., Goldfarb K. C., Santee C. A. et al. 2009; Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139:485–498 [CrossRef][PubMed]
    [Google Scholar]
  62. Joossens M., Huys G., Cnockaert M., De Preter V., Verbeke K., Rutgeerts P., Vandamme P., Vermeire S.. 2011; Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut60:631–637 [CrossRef][PubMed]
    [Google Scholar]
  63. Kamada N., Núñez G.. 2014; Regulation of the immune system by the resident intestinal bacteria. Gastroenterology146:1477–1488 [CrossRef][PubMed]
    [Google Scholar]
  64. Kane A. V., Dinh D. M., Ward H. D.. 2014; Childhood malnutrition and the intestinal microbiome. Pediatr Res77:256–262 [CrossRef][PubMed]
    [Google Scholar]
  65. Kayama H., Takeda K.. 2016; Functions of innate immune cells and commensal bacteria in gut homeostasis. J Biochem159:141–149 [CrossRef][PubMed]
    [Google Scholar]
  66. Koboziev I., Reinoso Webb C., Furr K. L., Grisham M. B.. 2014; Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med68:122–133 [CrossRef][PubMed]
    [Google Scholar]
  67. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., Angenent L. T., Ley R. E.. 2011; Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A108:4578–4585 [CrossRef][PubMed]
    [Google Scholar]
  68. Koropatkin N. M., Cameron E. A., Martens E. C.. 2012; How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol10:323–335 [CrossRef][PubMed]
    [Google Scholar]
  69. Kovach Z., Kaakoush N. O., Lamb S., Zhang L., Raftery M. J., Mitchell H.. 2011; Immunoreactive proteins of Campylobacter concisus, an emergent intestinal pathogen. FEMS Med Microbiol63:387–396 [CrossRef]
    [Google Scholar]
  70. Kullberg M. C., Jankovic D., Gorelick P. L., Caspar P., Letterio J. J., Cheever A. W., Sher A.. 2002; Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis. J Exp Med196:505–515[PubMed][CrossRef]
    [Google Scholar]
  71. Leach S. T., Day A. S.. 2006; S100 proteins in the pathogenesis and diagnosis of inflammatory bowel disease. Exp Rev Clin Immunol2:471–480[CrossRef]
    [Google Scholar]
  72. Leone V., Chang E. B., Devkota S.. 2013; Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases. J Gastroenterol48:315–321 [CrossRef][PubMed]
    [Google Scholar]
  73. Lepage P., Mondot S., Vasquez N.. 2009; Bacterial recolonization after gut resection for Crohn’s disease: uniformity as an essential factor toward remission. Gut58:OPO 20
    [Google Scholar]
  74. Lewis J. D., Chen E. Z., Baldassano R. N., Otley A. R., Griffiths A. M., Lee D., Bittinger K., Bailey A., Friedman E. S. et al. 2015; Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe18:489–500 [CrossRef][PubMed]
    [Google Scholar]
  75. Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S., Schlegel M. L., Tucker T. A., Schrenzel M. D. et al. 2008; Evolution of mammals and their gut microbes. Science320:1647–1651 [CrossRef][PubMed]
    [Google Scholar]
  76. Li J., Moran T., Swanson E., Julian C., Harris J., Bonen D. K., Hedl M., Nicolae D. L., Abraham C. et al. 2004; Regulation of IL-8 and IL-1β expression in Crohn's disease associated NOD2/CARD15 mutations. Hum Mol Genet13:1715–1725 [CrossRef][PubMed]
    [Google Scholar]
  77. Loh G., Blaut M.. 2012; Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes3:544–555 [CrossRef][PubMed]
    [Google Scholar]
  78. Lozupone C. A., Stombaugh J. I., Gordon J. I., Jansson J. K., Knight R.. 2012; Diversity, stability and resilience of the human gut microbiota. Nature489:220–230 [CrossRef][PubMed]
    [Google Scholar]
  79. Lupp C., Robertson M. L., Wickham M. E., Sekirov I., Champion O. L., Gaynor E. C., Finlay B. B.. 2007; Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2:119–129 [CrossRef][PubMed]
    [Google Scholar]
  80. Macfarlane G. T., Macfarlane S.. 2013; Manipulating the indigenous microbiota in humans: prebiotics, probiotics, and synbiotics. The human microbiota. In How Microbial Communities Affect Health and Disease pp338–315 Edited by Fredrick D. N.. John Wiley & Son, Inc:
    [Google Scholar]
  81. Mackie R. I., Sghir A., Gaskins H. R.. 1999; Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr69:1035S–1045S[PubMed]
    [Google Scholar]
  82. Mahida Y. R.. 2000; The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis6:21–33 [CrossRef][PubMed]
    [Google Scholar]
  83. Man S. M., Zhang L., Day A. S., Leach S. T., Lemberg D. A., Mitchell H.. 2010; Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn's disease. Inflamm Bowel Dis16:1008–1016 [CrossRef][PubMed]
    [Google Scholar]
  84. Man S. M., Karki R., Kanneganti T.-D.. 2016; DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota. Pathog Dis74:1–9 [CrossRef]
    [Google Scholar]
  85. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R., Jarrin C., Chardon P. et al. 2006; Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut55:205–211 [CrossRef][PubMed]
    [Google Scholar]
  86. Marchesi J. R., Holmes E., Khan F., Kochhar S., Scanlan P., Shanahan F., Wilson I. D., Wang Y.. 2007; Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res6:546–551 [CrossRef][PubMed]
    [Google Scholar]
  87. Marchesi J. R., Adams D. H., Fava F., Hermes G. D., Hirschfield G. M., Hold G., Quraishi M. N., Kinross J., Smidt H. et al. 2016; The gut microbiota and host health: a new clinical frontier. Gut65:330–339 [CrossRef][PubMed]
    [Google Scholar]
  88. Martins dos Santos V., Müller M., de Vos W. M.. 2010; Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Curr Opin Biotechnol21:539–550 [CrossRef][PubMed]
    [Google Scholar]
  89. Matricon J., Barnich N., Ardid D.. 2010; Immunopathogenesis of inflammatory bowel disease. Self Nonself1:299–309 [CrossRef][PubMed]
    [Google Scholar]
  90. Martin H. M., Campbell B. J., Hart C. A., Mpofu C., Nayar M., Singh R., Englyst H., Williams H. F., Rhodes J. M.. 2004; Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology127:80–93[PubMed][CrossRef]
    [Google Scholar]
  91. McMullen L., Leach S. T., Lemberg D. A., Day A. S.. 2015; Current roles of specific bacteria in the pathogenesis of inflammatory bowel disease. Microbiol1:82–91
    [Google Scholar]
  92. Metzker M. L.. 2005; Emerging technologies in DNA sequencing. Genome Res15:1767–1776 [CrossRef][PubMed]
    [Google Scholar]
  93. Mukhopadhya I., Hansen R., El-Omar E. M., Hold G. L.. 2012; IBD-what role do Proteobacteria play?. Nat Rev Gastroenterol Hepatol9:219–230 [CrossRef][PubMed]
    [Google Scholar]
  94. Nagalingam N. A., Lynch S. V.. 2012; Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis18:968–984 [CrossRef][PubMed]
    [Google Scholar]
  95. Ng S. C., Tang W., Ching J. Y., Wong M., Chow C. M., Hui A. J., Wong T. C., Leung V. K., Tsang S. W. Asia–Pacific Crohn's and Colitis Epidemiologic Study (ACCESS) Study Group et al. 2013; Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn's and colitis epidemiology study. Gastroenterology145:158–165 [CrossRef][PubMed]
    [Google Scholar]
  96. Nguyen H. T., Lapaquette P., Bringer M. A., Darfeuille-Michaud A.. 2013; Autophagy and Crohn's disease. J Innate Immun5:434–443 [CrossRef][PubMed]
    [Google Scholar]
  97. Olsen G. J., Lane D. J., Giovannoni S. J., Pace N. R., Stahl D. A.. 1986; Microbial ecology and evolution: a ribosomal RNA approach. Ann Rev Microbiol40:337–365 [CrossRef]
    [Google Scholar]
  98. Pagliari D., Piccirillo C. A., Larbi A., Cianci R.. 2015; The interactions between innate immunity and microbiota in gastrointestinal diseases. J Immunol Res 2015:1–3 [CrossRef]
    [Google Scholar]
  99. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O.. 2007; Development of the human infant intestinal microbiota. PLoS Biol5:1556–1573 [CrossRef]
    [Google Scholar]
  100. Palomino-Morales R. J., Oliver J., Gómez-García M., López-Nevot M. A., Rodrigo L., Nieto A., Alizadeh B. Z., Martín J.. 2009; Association of ATG16L1 and IRGM genes polymorphisms with inflammatory bowel disease: a meta-analysis approach. Genes Immun10:356–364 [CrossRef][PubMed]
    [Google Scholar]
  101. Pandey S., Kawai T., Akira S.. 2015; Microbial sensing by toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol7:1–18 [CrossRef]
    [Google Scholar]
  102. Papamichael K., Konstantopoulos P., Mantzaris G. J.. 2014; Helicobacter pylori infection and inflammatory bowel disease: is there a link?. World J Gastroenterol20:6374–6385 [CrossRef][PubMed]
    [Google Scholar]
  103. Patel K. K., Stappenbeck T. S.. 2013; Autophagy and intestinal homeostasis. Annu Rev Physiol75:241–262 [CrossRef][PubMed]
    [Google Scholar]
  104. Peterson L. W., Artis D.. 2014; Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol14:141–153 [CrossRef][PubMed]
    [Google Scholar]
  105. Pokusaeva K., Fitzgerald G. F., van Sinderen D.. 2011; Carbohydrate metabolism in Bifidobacteria. Genes Nutr6:285–306 [CrossRef][PubMed]
    [Google Scholar]
  106. Pérez-Cobas A. E., Gosalbes M. J., Friedrichs A., Knecht H., Artacho A., Eismann K., Otto W., Rojo D., Bargiela R. et al. 2013; Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut62:1591–1601 [CrossRef][PubMed]
    [Google Scholar]
  107. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F. et al. 2010; A human gut microbial gene catalogue established by metagenomic sequencing. Nature464:59–65 [CrossRef][PubMed]
    [Google Scholar]
  108. Quévrain E., Maubert M., Michon C., Chain F., Marquant R., Tailhades J., Miquel S., Carlier L., Bermúdez-Humarán L. et al. 2015; Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut1:1–11
    [Google Scholar]
  109. Øyri S. F., Muzes G., Sipos F.. 2015; Dysbiotic gut microbiome: a key element of Crohn's disease. Comp Immunol Microbiol Infect Dis43:36–49 [CrossRef][PubMed]
    [Google Scholar]
  110. Rajca S., Grondin V., Louis E., Vernier-Massouille G., Grimaud J. C., Bouhnik Y., Laharie D., Dupas J. L., Pillant H. et al. 2014; Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn's disease. Inflamm Bowel Dis20:978–986 [CrossRef][PubMed]
    [Google Scholar]
  111. Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R.. 2004; Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell118:229–241 [CrossRef][PubMed]
    [Google Scholar]
  112. Reaves T. A., Chin A. C., Parkos C. A.. 2005; Neutrophil transepithelial migration: role of toll-like receptors in mucosal inflammation. Mem Inst Oswaldo Cruz100:191–198 [CrossRef][PubMed]
    [Google Scholar]
  113. Rokkas T., Gisbert J., Niv Y., O’Morain C.. 2015; The association between Helicobacter pylori infection and inflammatory bowel disease based on meta-analysis. United European Gastroenterol J3:539–550 [CrossRef][PubMed]
    [Google Scholar]
  114. Rutgeerts P., Goboes K., Peeters M., Hiele M., Penninckx F., Aerts R., Kerremans R., Vantrappen G.. 1991; Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum. Lancet338:771–774 [CrossRef][PubMed]
    [Google Scholar]
  115. Saez-Lara M. J., Gomez-Llorente C., Plaza-Diaz J., Gil A.. 2015; The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BioMed Res Int2015:1–15[CrossRef]
    [Google Scholar]
  116. Sartor R. B.. 2006; Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol3:390–407 [CrossRef][PubMed]
    [Google Scholar]
  117. Sartor R. B.. 2007; Bacteria in Crohn's disease: mechanisms of inflammation and therapeutic implications. J Clin Gastroenterol41:S37–S43 [CrossRef][PubMed]
    [Google Scholar]
  118. Scaldaferri F., Gerardi V., Lopetuso L. R., Del Zompo F., Mangiola F., Boškoski I., Bruno G., Petito V., Laterza L. et al. 2013; Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. BioMed Research Int2013:1–9 [CrossRef]
    [Google Scholar]
  119. Schrezenmeir J., de Vrese M.. 2001; Probiotics, prebiotics, and synbiotics – approaching a definition. Am J Clin Nutr73:361s–364s[PubMed]
    [Google Scholar]
  120. Scott K. P., Gratz S. W., Sheridan P. O., Flint H. J., Duncan S. H.. 2013; The influence of diet on the gut microbiota. Pharmacol Res69:52–60 [CrossRef][PubMed]
    [Google Scholar]
  121. Segain J. P., Raingeard de la Blétière D., Bourreille A., Leray V., Gervois N., Rosales C., Ferrier L., Bonnet C., Blottière H. M. et al. 2000; Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut47:397–403 [CrossRef][PubMed]
    [Google Scholar]
  122. Sekirov I., Russell S. L., Antunes L. C., Finlay B. B.. 2010; Gut microbiota in health and disease. Physiol Rev90:859–904 [CrossRef][PubMed]
    [Google Scholar]
  123. Seksik P., Rigottier-Gois L., Gramet G., Sutren M., Pochart P., Marteau P., Jian R., Doré J.. 2003; Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut52:237–242 [CrossRef][PubMed]
    [Google Scholar]
  124. Seksik P., Sokol H., Lepage P., Vasquez N., Manichanh C., Mangin I., Pochart P., Dore J., Marteau P.. 2006; Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment Pharmacol Therap24:11–18[CrossRef]
    [Google Scholar]
  125. Shang L., Fukata M., Thirunarayanan N., Martin A. P., Arnaboldi P., Maussang D., Berin C., Unkeless J. C., Mayer L. et al. 2008; Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology135:529–538 [CrossRef][PubMed]
    [Google Scholar]
  126. Shaw S. Y., Blanchard J. F., Bernstein C. N.. 2011; Association between the use of antibiotics and new diagnoses of Crohn's disease and ulcerative colitis. Am J Gastroenterol106:2133–2142 [CrossRef][PubMed]
    [Google Scholar]
  127. Sheehan D., Moran C., Shanahan F.. 2015; The microbiota in inflammatory bowel disease. J Gastroenterol50:495–507 [CrossRef][PubMed]
    [Google Scholar]
  128. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L. G., Gratadoux J. J., Blugeon S., Bridonneau C., Furet J. P. et al. 2008; Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A105:16731–16736 [CrossRef][PubMed]
    [Google Scholar]
  129. Sokol H., Seksik P., Furet J. P., Firmesse O., Nion-Larmurier I., Beaugerie L., Cosnes J., Corthier G., Marteau P. et al. 2009; Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis15:1183–1189 [CrossRef][PubMed]
    [Google Scholar]
  130. Srinivas G., Möller S., Wang J., Künzel S., Zillikens D., Baines J. F., Ibrahim S. M.. 2013; Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin blistering. Nat Commun4:1–7 [CrossRef]
    [Google Scholar]
  131. Sun L., Nava G. M., Stappenbeck T. S.. 2011; Host genetic susceptibility, dysbiosis and viral triggers in IBD. Curr Opin Gastroenterol27:321–327[CrossRef]
    [Google Scholar]
  132. Swidsinski A., Loening-Baucke V., Vaneechoutte M., Doerffel Y.. 2008; Active Crohn's disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm Bowel Dis14:147–161 [CrossRef][PubMed]
    [Google Scholar]
  133. Tamboli C. P., Neut C., Desreumaux P., Colombel J. F.. 2004; Dysbiosis in inflammatory bowel disease. Gut53:1–4 [CrossRef][PubMed]
    [Google Scholar]
  134. Tanoue T., Atarashi K., Honda K.. 2016; Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol16:295–309 [CrossRef][PubMed]
    [Google Scholar]
  135. Tawfik A., Flanagan P. K., Campbell B. J.. 2014; Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World J Gastroenterol20:8751–8763 [CrossRef][PubMed]
    [Google Scholar]
  136. Tlaskalová-Hogenová H., Stěpánková R., Kozáková H., Hudcovic T., Vannucci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M. et al. 2011; The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol8:110–120 [CrossRef][PubMed]
    [Google Scholar]
  137. Turnbaugh P. J., Ley R. E., Hamady M., Fraser-Liggett C., Knight R., Gordon J. I. 2007; The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature449:804–810[CrossRef]
    [Google Scholar]
  138. Turnbaugh P. J., Ridaura V. K., Faith J. J., Rey F. E., Knight R., Gordon J.. 2009; The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Trans Med1:614 [CrossRef]
    [Google Scholar]
  139. Ungaro R., Bernstein C. N., Gearry R., Hviid A., Kolho K. L., Kronman M. P., Shaw S., Van Kruiningen H., Colombel J. F., Atreja A.. 2014; Antibiotics associated with increased risk of new-onset Crohn's disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol109:1728–1738 [CrossRef][PubMed]
    [Google Scholar]
  140. Vanhoutvin S. A., Troost F. J., Hamer H. M., Lindsey P. J., Koek G. H., Jonkers D. M., Kodde A., Venema K., Brummer R. J.. 2009; Butyrate-induced transcriptional changes in human colonic mucosa. PLoS One4:1–7 [CrossRef]
    [Google Scholar]
  141. Virta L., Auvinen A., Helenius H., Huovinen P., Kolho K. L.. 2012; Association of repeated exposure to antibiotics with the development of pediatric Crohn's disease – a nationwide, register-based finnish case-control study. Am J Epidemiol175:775–784 [CrossRef][PubMed]
    [Google Scholar]
  142. Walker A. W., Sanderson J. D., Churcher C., Parkes G. C., Hudspith B. N., Rayment N., Brostoff J., Parkhill J., Dougan G., Petrovska L.. 2011; High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol11:1–12 [CrossRef][PubMed]
    [Google Scholar]
  143. Wang M. H., Fiocchi C., Ripke S., Zhu X., Duerr R. H., Achkar J. P.. 2013; A novel approach to detect cumulative genetic effects and genetic interactions in Crohn's disease. Inflamm Bowel Dis19:1799–1808 [CrossRef][PubMed]
    [Google Scholar]
  144. Weinstock G. M.. 2012; Genomic approaches to studying the human microbiota. Nature489:250–256 [CrossRef][PubMed]
    [Google Scholar]
  145. Wright E. K., Kamm M. A., Teo S. M., Inouye M., Wagner J., Kirkwood C. D.. 2015; Recent advances in characterizing the gastrointestinal microbiome in Crohn's disease: a systematic review. Inflamm Bowel Dis21:1219–1228 [CrossRef][PubMed]
    [Google Scholar]
  146. Young V. B., Schmidt T. M.. 2004; Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol42:1203–1206 [CrossRef][PubMed]
    [Google Scholar]
  147. Zareie M., Singh P. K., Irvine E. J., Sherman P. M., McKay D. M., Perdue M. H.. 2001; Monocyte/macrophage activation by normal bacteria and bacterial products: implications for altered epithelial function in Crohn's disease. Am J Pathol158:1101–1109 [CrossRef][PubMed]
    [Google Scholar]
  148. Zhang L., Lee H., Grimm M. C., Riordan S. M., Day A. S., Lemberg D. A.. 2014; Campylobacter concisus and inflammatory bowel disease. World J Gastroenterol20:1267
    [Google Scholar]
  149. Zhang M., Liu B., Zhang Y., Wei H., Lei Y., Zhao L.. 2007; Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol45:496–500 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000331
Loading
/content/journal/jmm/10.1099/jmm.0.000331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error