1887

Abstract

Coagulase-negative Staphylococcus warneri is an opportunistic pathogen capable of causing several infections, especially in patients with indwelling medical devices. We evaluated the virulence-associated properties of 23 clinical isolates recovered from blood specimens. In addition, the carriage of biofilm-associated genes, as well as antibiotic-resistant genes, was identified. S. warneri isolates appeared to be clonally unrelated and revealed a high degree of genetic diversity. All isolates revealed adhesion to epithelial cells, and 43.5 % of strains invaded the cells. Moreover, 52 % of isolates formed biofilm in vitro. PCR analysis demonstrated the presence of the ica operon, in two of the 12 biofilm-positive isolates. This indicated that biofilm formation, in this species, is not restricted to strains harbouring ica ADBC genes, encoding polysaccharide intercellular adhesion. Analysis by confocal laser scanning microscopy revealed that biofilm-forming strains formed a three-dimensional structure, composed of mainly living cells. All strains revealed cell-contact cytotoxicity that was strongly associated with biofilm formation. Moreover, cell-free supernatants, of 95 % of the isolates, expressed a cytotoxic activity which caused the destruction of HeLa cells. S. warneri capable of forming biofilm carried significantly more genes encoding resistance to beta-lactams, aminoglicosides and macrolide-lincosamide streptogramin B antibiotics than biofilm-negative isolates. We have shown that tigecycline/rifampicin is effective against bacteria growing as a biofilm. The biofilm inhibitory concentration range of tigecycline/rifampicin was ≤1 µg ml. Results indicated that S. warneri have the ability to adhere, form biofilm, invade and destroy epithelial cells, which could be important mechanisms contributing to the development of diseases.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000287
2016-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/8/828.html?itemId=/content/journal/jmm/10.1099/jmm.0.000287&mimeType=html&fmt=ahah

References

  1. Announ N., Mattei J. P., Jaoua S., Fenollar F., Sati H., Chagnaud C., Roudier J., Guis S..( 2004;). Multifocal discitis caused by Staphylococcus warneri. . Joint Bone Spine 71: 240–242. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arciola C. R., An Y. H., Campoccia D., Donati M. E., Montanaro L..( 2005;). Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. . Int J Artif Organs 28: 1091–1100.[PubMed]
    [Google Scholar]
  3. Ardic N., Sareyyupoglu B., Ozyurt M., Haznedaroglu T., Ilga U..( 2006;). Investigation of aminoglycoside modifying enzyme genes in methicillin-resistant staphylococci. . Microbiol Res 161: 49–54. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arslan F., Saltoglu N., Mete B., Mert A..( 2011;). Recurrent Staphylococcus warnerii prosthetic valve endocarditis: a case report and review. . Ann Clin Microbiol Antimicrob 10: 14. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bradford R., Manan R. A., Garland S. M., Daley A. J., Deighton M. A..( 2011;). Coagulase-negative staphylococci in low birth weight infants: environmental factors affecting biofilm production in Staphylococcus epidermidis. . Curr Microbiol 62: 850–854. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bur S., Preissner K. T., Herrmann M., Bischoff M..( 2013;). The Staphylococcus aureus extracellular adherence protein promotes bacterial internalization by keratinocytesindependent offibronectin-binding proteins. . J Invest Dermatol 133: 2004–2012. [CrossRef] [PubMed]
    [Google Scholar]
  7. Buttery J. P., Easton M., Pearson S. R., Hogg G. G..( 1997;). Pediatric bacteremia due to Staphylococcus warneri: microbiological, epidemiological, and clinical features. . J Clin Microbiol 35: 2174–2177.[PubMed]
    [Google Scholar]
  8. Center K. J., Reboli A. C., Hubler R., Rodgers G. L., Long S. S., Gail L..( 2003;). Decreased vancomycin susceptibility of coagulase- negative staphylococci in a neonatal intensive care unit: evidence of spread of Staphylococcus warneri. . J Clin Microbiol 41: 4660–4665. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cerca F., França A., Pérez-Cabezas B., Carvalhais V., Ribeiro A., Azeredo J., Pier G., Cerca N., Vilanova M..( 2014;). Dormant bacteria within Staphylococcus epidermidis biofilms have low inflammatory properties and maintain tolerance to vancomycin and penicillin after entering planktonic growth. . J Med Microbiol 63: 1274–1283. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chokr A., Watier D., Eleaume H., Pangon B., Ghnassia J. C., Mack D., Jabbouri S..( 2006;). Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. . Int J Med Microbiol 296: 381–388. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cimiotti J. P., Haas J. P., Della-Latta P., Wu F., Saiman L., Larson E. L..( 2007;). Prevalence and clinical relevance of Staphylococcus warneri in the neonatal intensive care unit. . Infect Control Hosp Epidemiol 28: 326–330. [CrossRef] [PubMed]
    [Google Scholar]
  12. de Silva G. D., Kantzanou M., Justice A., Massey R. C., Wilkinson A. R., Day N. P., Peacock S. J..( 2002;). The ica operon and biofilm production in coagulase-negative staphylococci associated with carriage and disease in a neonatal intensive care unit. . J Clin Microbiol 40: 382–388. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fredheim E. G., Klingenberg C., Rohde H., Frankenberger S., Gaustad P., Flaegstad T., Sollid J. E..( 2009;). Biofilm formation by Staphylococcus haemolyticus. . J Clin Microbiol 47: 1172–1180. [CrossRef] [PubMed]
    [Google Scholar]
  14. Geha D. J., Uhl J. R., Gustaferro C. A., Persing D. H..( 1994;). Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. . J Clin Microbiol 32: 1768–1772.[PubMed]
    [Google Scholar]
  15. Hira V., Kornelisse R. F., Sluijter M., Kamerbeek A., Goessens W. H., de Groot R., Hermans P. W..( 2013;). Colonization dynamics of antibiotic-resistant coagulase-negative Staphylococci in neonates. . J Clin Microbiol 51: 595–597. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kamath U., Singer C., Isenberg H. D..( 1992;). Clinical significance of Staphylococcus warneri bacteremia. . J Clin Microbiol 30: 261–264.[PubMed]
    [Google Scholar]
  17. Kaufman D., Fairchild K. D..( 2004;). Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. . Clin Microbiol Rev 17: 638–680. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim J. H., Kim C. H., Hacker J., Ziebuhr W., Lee B. K., Cho S. H..( 2008;). Molecular characterization of regulatory genes associated with biofilm variation in a Staphylococcus aureus strain. . J Microbiol Biotechnol 18: 28–34.[PubMed]
    [Google Scholar]
  19. Klingenberg C., Rønnestad A., Anderson A. S., Abrahamsen T. G., Zorman J., Villaruz A., Flaegstad T., Otto M., Sollid J. E..( 2007;). Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness. . Clin Microbiol Infect 13: 1100–1111. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kloos W. E., Schleifer K. H..( 1975;). Isolation and characterization of staphylococci from human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. . Int J Syst Bacteriol 25: 62–79. [CrossRef]
    [Google Scholar]
  21. Krzyminska S., Tanska A., Kaznowski A..( 2011;). Aeromonas spp. induce apoptosis of epithelial cells through an oxidant-dependent activation of the mitochondrial pathway. . J Med Microbiol 60: 889–898. [CrossRef] [PubMed]
    [Google Scholar]
  22. Krzyminska S., Szczuka E., Dudzińska K., Kaznowski A..( 2015;). Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens. . Antonie Van Leeuwenhoek 107: 857–868. [CrossRef] [PubMed]
    [Google Scholar]
  23. Laabei M., Jamieson W. D., Yang Y., van den Elsen J., Jenkins A. T..( 2014;). Investigating the lytic activity and structural properties of Staphylococcus aureus phenol soluble modulin (PSM) peptide toxins. . Biochim Biophys Acta 1838: 3153–3161. [CrossRef] [PubMed]
    [Google Scholar]
  24. Le Bouter A., Leclercq R., Cattoir V..( 2011;). Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus saprophyticus clinical isolates. . Int J Antimicrob Agents 37: 118–123. [CrossRef] [PubMed]
    [Google Scholar]
  25. Le K. Y., Dastgheyb S., Ho T. V., Otto M..( 2014;). Molecular determinants ofstaphylococcal biofilm dispersal and structuring. . Front Cell Infect Microbiol 4: 167. [CrossRef] [PubMed]
    [Google Scholar]
  26. Legius B., Landuyt K. V., Verschueren P., Westhovens R..( 2012;). Septic arthritis due to Staphylococcus warneri: a diagnostic challenge. . Open Rheumatol J 6: 310–311. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mehr S. S., Sadowsky J. L., Doyle L. W., Carr J..( 2002;). Sepsis in neonatal intensive care in the late 1990s. . J Paediatr Child Health 38: 246–251. [CrossRef] [PubMed]
    [Google Scholar]
  28. Moskowitz S. M., Foster J. M., Emerson J., Burns J. L..( 2004;). Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. . J Clin Microbiol 42: 1915–1922. [CrossRef] [PubMed]
    [Google Scholar]
  29. Murphy T. M., Deitz J. M., Petersen P. J., Mikels S. M., Weiss W. J..( 2000;). Therapeutic efficacy of GAR-936, a novel glycylcycline, in a rat model of experimental endocarditis. . Antimicrob Agents Chemother 44: 3022–3027. [CrossRef] [PubMed]
    [Google Scholar]
  30. Nawrot R., Wolun-Cholewa M., Bialas W., Wyrzykowska D., Balcerkiewicz S., Gozdzicka-Jozefiak A..( 2010;). Cytotoxic activity of proteins isolated from extracts of Corydalis cava tubers in human cervical carcinoma HeLa cells. . BMC Complement Altern Med 78: 1–7. [CrossRef]
    [Google Scholar]
  31. Otto M..( 2004;). Virulence factors of the coagulase-negative staphylococci. . Front Biosci 9: 841–863. [CrossRef] [PubMed]
    [Google Scholar]
  32. Paluch-Oleś J., Magryś A., Kozioł-Montewka M., Niedzielski A., Niedźwiadek J., Niedzielska G., Kotowski M..( 2011;). The phenotypic and genetic biofilm formation characteristics of coagulase-negative staphylococci isolates in children with otitis media. . Int J Pediatr Otorhinolaryngol 75: 126–130. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pereira E. M., Teixeira C. A., Alvarenga A. L., Schuenck R. P., Giambiagi-Demarval M., Holandino C., Mattos-Guaraldi A. L., dos Santos K. R..( 2012;). A Brazilian lineage of Staphylococcus lugdunensis presenting rough colony morphology may adhere to and invade lung epithelial cells. . J Med Microbiol 61: 463–469. [CrossRef] [PubMed]
    [Google Scholar]
  34. Petersen P. J., Labthavikul P., Jones C. H., Bradford P. A., Patricia A..( 2006;). In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. . J Antimicrob Chemother 57: 573–576. [CrossRef] [PubMed]
    [Google Scholar]
  35. Qin Z., Yang X., Yang L., Jiang J., Ou Y., Molin S., Qu D., Qu D..( 2007;). Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. . J Med Microbiol 56: 83–93. [CrossRef] [PubMed]
    [Google Scholar]
  36. Richter E., Harms M., Ventz K., Gierok P., Chilukoti R. K., Hildebrandt J. P., Mostertz J., Hochgräfe F..( 2015;). A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. . PLoS One 10: e012208926. [CrossRef] [PubMed]
    [Google Scholar]
  37. Singh R., Ray P., Das A., Sharma M..( 2010;). Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. . J Antimicrob Chemother 65: 1955–1958. [CrossRef] [PubMed]
    [Google Scholar]
  38. Stöllberger C., Wechsler-Fördös A., Geppert F., Gulz W., Brownstone E., Nicolakis M., Finsterer J..( 2006;). Staphylococcus warneri endocarditis after implantation of a lumbar disc prosthesis in an immunocompetent patient. . J Infect 52: e15e18. [CrossRef] [PubMed]
    [Google Scholar]
  39. Taylor A. L., Cross E. L., Llewelyn M. J..( 2012;). Induction of contact-dependent CD8(+) regulatory T cells through stimulation with staphylococcal and streptococcal superantigens. . Immunology 135: 158–167. [CrossRef] [PubMed]
    [Google Scholar]
  40. Torre D., Ferraro G., Fiori G. P., Martegani R., Speranza F., Tambini R., Zeroli C..( 1992;). Ventriculoatrial shunt infection caused by Staphylococcus warneri: case report and review. . Clin Infect Dis 14: 49–52. [CrossRef] [PubMed]
    [Google Scholar]
  41. Valour F., Trouillet-Assant S., Rasigade J. P., Lustig S., Chanard E., Meugnier H., Tigaud S., Vandenesch F., Etienne J. et al.( 2013;). Staphylococcus epidermidis in orthopedic device infections: the role of bacterial internalization in human osteoblasts and biofilm formation. . PLoS One 8: e67240. [CrossRef] [PubMed]
    [Google Scholar]
  42. Vaudaux P., Fleury B., Gjinovci A., Huggler E., Tangomo-Bento M., Lew D. P..( 2009;). Comparison of tigecycline and vancomycin for treatment of experimental foreign-body infection due to methicillin-resistant Staphylococcus aureus. . Antimicrob Agents Chemother 53: 3150–3152. [CrossRef] [PubMed]
    [Google Scholar]
  43. Vergidis P., Schmidt-Malan S. M., Mandrekar J. N., Steckelberg J. M., Patel R..( 2015;). Comparative activities of vancomycin, tigecycline and rifampin in a rat model of methicillin-resistant Staphylococcus aureus osteomyelitis. . J Infect 70: 609–615. [CrossRef] [PubMed]
    [Google Scholar]
  44. Vernon J., Girardin N., Lacombe C., Berjeaud J. M., Héchard Y..( 2009;). delta-hemolysin, an update on a membrane-interacting peptide. . Peptides 30: 817–823. [CrossRef] [PubMed]
    [Google Scholar]
  45. Versalovic J., Koeuth T., Lupski J. R..( 1991;). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. . Nucleic Acids Res 19: 6823–6831. [CrossRef] [PubMed]
    [Google Scholar]
  46. von Eiff C., Arciola C. R., Montanaro L., Becker K., Campoccia D..( 2006;). Emerging Staphylococcus species as new pathogens in implant infections. . Int J Artif Organs 29: 360–367.[PubMed]
    [Google Scholar]
  47. Wendlandt S., Feßler A. T., Monecke S., Ehricht R., Schwarz S., Kadlec K..( 2013;). The diversity of antimicrobial resistance genes among staphylococci of animal origin. . Int J Med Microbiol 303: 338–349. [CrossRef] [PubMed]
    [Google Scholar]
  48. Woegerbauer M., Zeinzinger J., Springer B., Hufnagl P., Indra A., Korschineck I., Hofrichter J., Kopacka I., Fuchs R. et al.( 2014;). Prevalence of the aminoglycoside phosphotransferase genes aph(3′)-IIIa and aph(3′)-IIa in Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica and Staphylococcus aureus isolates in Austria. . J Med Microbiol 63: 210–217. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wood C. A., Kamath U., Singer C., Isenberg H. D..( 1992;). Significant infection caused by Staphylococcus warneri. . J Clin Microbiol 30: 2216–2217.[PubMed]
    [Google Scholar]
  50. Yin L. Y., Lazzarini L., Li F., Stevens C. M., Calhoun J. H..( 2005;). Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. . J Antimicrob Chemother 55: 995–1002. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zheng Z., Stewart P. S..( 2002;). Penetration of rifampin through Staphylococcus epidermidis biofilms. . Antimicrob Agents Chemother 46: 900–903. [CrossRef] [PubMed]
    [Google Scholar]
  52. Ziebuhr W., Hennig S., Eckart M., Kränzler H., Batzilla C., Kozitskaya S..( 2006;). Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. . Int Antimicrob Agents 28: 14–20. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000287
Loading
/content/journal/jmm/10.1099/jmm.0.000287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error