1887

Abstract

Coagulase-negative is an opportunistic pathogen capable of causing several infections, especially in patients with indwelling medical devices. We evaluated the virulence-associated properties of 23 clinical isolates recovered from blood specimens. In addition, the carriage of biofilm-associated genes, as well as antibiotic-resistant genes, was identified. isolates appeared to be clonally unrelated and revealed a high degree of genetic diversity. All isolates revealed adhesion to epithelial cells, and 43.5 % of strains invaded the cells. Moreover, 52 % of isolates formed biofilm . PCR analysis demonstrated the presence of the operon, in two of the 12 biofilm-positive isolates. This indicated that biofilm formation, in this species, is not restricted to strains harbouring genes, encoding polysaccharide intercellular adhesion. Analysis by confocal laser scanning microscopy revealed that biofilm-forming strains formed a three-dimensional structure, composed of mainly living cells. All strains revealed cell-contact cytotoxicity that was strongly associated with biofilm formation. Moreover, cell-free supernatants, of 95 % of the isolates, expressed a cytotoxic activity which caused the destruction of HeLa cells. capable of forming biofilm carried significantly more genes encoding resistance to beta-lactams, aminoglicosides and macrolide-lincosamide streptogramin B antibiotics than biofilm-negative isolates. We have shown that tigecycline/rifampicin is effective against bacteria growing as a biofilm. The biofilm inhibitory concentration range of tigecycline/rifampicin was ≤1 µg ml. Results indicated that have the ability to adhere, form biofilm, invade and destroy epithelial cells, which could be important mechanisms contributing to the development of diseases.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000287
2016-08-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/8/828.html?itemId=/content/journal/jmm/10.1099/jmm.0.000287&mimeType=html&fmt=ahah

References

  1. Announ N., Mattei J. P., Jaoua S., Fenollar F., Sati H., Chagnaud C., Roudier J., Guis S.. 2004; Multifocal discitis caused by Staphylococcus warneri. Joint Bone Spine71:240–242 [CrossRef][PubMed]
    [Google Scholar]
  2. Arciola C. R., An Y. H., Campoccia D., Donati M. E., Montanaro L.. 2005; Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int J Artif Organs28:1091–1100[PubMed]
    [Google Scholar]
  3. Ardic N., Sareyyupoglu B., Ozyurt M., Haznedaroglu T., Ilga U.. 2006; Investigation of aminoglycoside modifying enzyme genes in methicillin-resistant staphylococci. Microbiol Res161:49–54 [CrossRef][PubMed]
    [Google Scholar]
  4. Arslan F., Saltoglu N., Mete B., Mert A.. 2011; Recurrent Staphylococcus warnerii prosthetic valve endocarditis: a case report and review. Ann Clin Microbiol Antimicrob10:14 [CrossRef][PubMed]
    [Google Scholar]
  5. Bradford R., Manan R. A., Garland S. M., Daley A. J., Deighton M. A.. 2011; Coagulase-negative staphylococci in low birth weight infants: environmental factors affecting biofilm production in Staphylococcus epidermidis. Curr Microbiol62:850–854 [CrossRef][PubMed]
    [Google Scholar]
  6. Bur S., Preissner K. T., Herrmann M., Bischoff M.. 2013; The Staphylococcus aureus extracellular adherence protein promotes bacterial internalization by keratinocytesindependent offibronectin-binding proteins. J Invest Dermatol133:2004–2012 [CrossRef][PubMed]
    [Google Scholar]
  7. Buttery J. P., Easton M., Pearson S. R., Hogg G. G.. 1997; Pediatric bacteremia due to Staphylococcus warneri: microbiological, epidemiological, and clinical features. J Clin Microbiol35:2174–2177[PubMed]
    [Google Scholar]
  8. Center K. J., Reboli A. C., Hubler R., Rodgers G. L., Long S. S., Gail L.. 2003; Decreased vancomycin susceptibility of coagulase- negative staphylococci in a neonatal intensive care unit: evidence of spread of Staphylococcus warneri. J Clin Microbiol41:4660–4665 [CrossRef][PubMed]
    [Google Scholar]
  9. Cerca F., França A., Pérez-Cabezas B., Carvalhais V., Ribeiro A., Azeredo J., Pier G., Cerca N., Vilanova M.. 2014; Dormant bacteria within Staphylococcus epidermidis biofilms have low inflammatory properties and maintain tolerance to vancomycin and penicillin after entering planktonic growth. J Med Microbiol63:1274–1283 [CrossRef][PubMed]
    [Google Scholar]
  10. Chokr A., Watier D., Eleaume H., Pangon B., Ghnassia J. C., Mack D., Jabbouri S.. 2006; Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. Int J Med Microbiol296:381–388 [CrossRef][PubMed]
    [Google Scholar]
  11. Cimiotti J. P., Haas J. P., Della-Latta P., Wu F., Saiman L., Larson E. L.. 2007; Prevalence and clinical relevance of Staphylococcus warneri in the neonatal intensive care unit. Infect Control Hosp Epidemiol28:326–330 [CrossRef][PubMed]
    [Google Scholar]
  12. de Silva G. D., Kantzanou M., Justice A., Massey R. C., Wilkinson A. R., Day N. P., Peacock S. J.. 2002; The ica operon and biofilm production in coagulase-negative staphylococci associated with carriage and disease in a neonatal intensive care unit. J Clin Microbiol40:382–388 [CrossRef][PubMed]
    [Google Scholar]
  13. Fredheim E. G., Klingenberg C., Rohde H., Frankenberger S., Gaustad P., Flaegstad T., Sollid J. E.. 2009; Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol47:1172–1180 [CrossRef][PubMed]
    [Google Scholar]
  14. Geha D. J., Uhl J. R., Gustaferro C. A., Persing D. H.. 1994; Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol32:1768–1772[PubMed]
    [Google Scholar]
  15. Hira V., Kornelisse R. F., Sluijter M., Kamerbeek A., Goessens W. H., de Groot R., Hermans P. W.. 2013; Colonization dynamics of antibiotic-resistant coagulase-negative Staphylococci in neonates. J Clin Microbiol51:595–597 [CrossRef][PubMed]
    [Google Scholar]
  16. Kamath U., Singer C., Isenberg H. D.. 1992; Clinical significance of Staphylococcus warneri bacteremia. J Clin Microbiol30:261–264[PubMed]
    [Google Scholar]
  17. Kaufman D., Fairchild K. D.. 2004; Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev17:638–680 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim J. H., Kim C. H., Hacker J., Ziebuhr W., Lee B. K., Cho S. H.. 2008; Molecular characterization of regulatory genes associated with biofilm variation in a Staphylococcus aureus strain. J Microbiol Biotechnol18:28–34[PubMed]
    [Google Scholar]
  19. Klingenberg C., Rønnestad A., Anderson A. S., Abrahamsen T. G., Zorman J., Villaruz A., Flaegstad T., Otto M., Sollid J. E.. 2007; Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness. Clin Microbiol Infect13:1100–1111 [CrossRef][PubMed]
    [Google Scholar]
  20. Kloos W. E., Schleifer K. H.. 1975; Isolation and characterization of staphylococci from human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Bacteriol25:62–79 [CrossRef]
    [Google Scholar]
  21. Krzyminska S., Tanska A., Kaznowski A.. 2011; Aeromonas spp. induce apoptosis of epithelial cells through an oxidant-dependent activation of the mitochondrial pathway. J Med Microbiol60:889–898 [CrossRef][PubMed]
    [Google Scholar]
  22. Krzyminska S., Szczuka E., Dudzińska K., Kaznowski A.. 2015; Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens. Antonie Van Leeuwenhoek107:857–868 [CrossRef][PubMed]
    [Google Scholar]
  23. Laabei M., Jamieson W. D., Yang Y., van den Elsen J., Jenkins A. T.. 2014; Investigating the lytic activity and structural properties of Staphylococcus aureus phenol soluble modulin (PSM) peptide toxins. Biochim Biophys Acta1838:3153–3161 [CrossRef][PubMed]
    [Google Scholar]
  24. Le Bouter A., Leclercq R., Cattoir V.. 2011; Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus saprophyticus clinical isolates. Int J Antimicrob Agents37:118–123 [CrossRef][PubMed]
    [Google Scholar]
  25. Le K. Y., Dastgheyb S., Ho T. V., Otto M.. 2014; Molecular determinants ofstaphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol4:167 [CrossRef][PubMed]
    [Google Scholar]
  26. Legius B., Landuyt K. V., Verschueren P., Westhovens R.. 2012; Septic arthritis due to Staphylococcus warneri: a diagnostic challenge. Open Rheumatol J6:310–311 [CrossRef][PubMed]
    [Google Scholar]
  27. Mehr S. S., Sadowsky J. L., Doyle L. W., Carr J.. 2002; Sepsis in neonatal intensive care in the late 1990s. J Paediatr Child Health38:246–251 [CrossRef][PubMed]
    [Google Scholar]
  28. Moskowitz S. M., Foster J. M., Emerson J., Burns J. L.. 2004; Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol42:1915–1922 [CrossRef][PubMed]
    [Google Scholar]
  29. Murphy T. M., Deitz J. M., Petersen P. J., Mikels S. M., Weiss W. J.. 2000; Therapeutic efficacy of GAR-936, a novel glycylcycline, in a rat model of experimental endocarditis. Antimicrob Agents Chemother44:3022–3027 [CrossRef][PubMed]
    [Google Scholar]
  30. Nawrot R., Wolun-Cholewa M., Bialas W., Wyrzykowska D., Balcerkiewicz S., Gozdzicka-Jozefiak A.. 2010; Cytotoxic activity of proteins isolated from extracts of Corydalis cava tubers in human cervical carcinoma HeLa cells. BMC Complement Altern Med78:1–7 [CrossRef]
    [Google Scholar]
  31. Otto M.. 2004; Virulence factors of the coagulase-negative staphylococci. Front Biosci9:841–863 [CrossRef][PubMed]
    [Google Scholar]
  32. Paluch-Oleś J., Magryś A., Kozioł-Montewka M., Niedzielski A., Niedźwiadek J., Niedzielska G., Kotowski M.. 2011; The phenotypic and genetic biofilm formation characteristics of coagulase-negative staphylococci isolates in children with otitis media. Int J Pediatr Otorhinolaryngol75:126–130 [CrossRef][PubMed]
    [Google Scholar]
  33. Pereira E. M., Teixeira C. A., Alvarenga A. L., Schuenck R. P., Giambiagi-Demarval M., Holandino C., Mattos-Guaraldi A. L., dos Santos K. R.. 2012; A Brazilian lineage of Staphylococcus lugdunensis presenting rough colony morphology may adhere to and invade lung epithelial cells. J Med Microbiol61:463–469 [CrossRef][PubMed]
    [Google Scholar]
  34. Petersen P. J., Labthavikul P., Jones C. H., Bradford P. A., Patricia A.. 2006; In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother57:573–576 [CrossRef][PubMed]
    [Google Scholar]
  35. Qin Z., Yang X., Yang L., Jiang J., Ou Y., Molin S., Qu D., Qu D.. 2007; Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol56:83–93 [CrossRef][PubMed]
    [Google Scholar]
  36. Richter E., Harms M., Ventz K., Gierok P., Chilukoti R. K., Hildebrandt J. P., Mostertz J., Hochgräfe F.. 2015; A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS One10:e012208926 [CrossRef][PubMed]
    [Google Scholar]
  37. Singh R., Ray P., Das A., Sharma M.. 2010; Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother65:1955–1958 [CrossRef][PubMed]
    [Google Scholar]
  38. Stöllberger C., Wechsler-Fördös A., Geppert F., Gulz W., Brownstone E., Nicolakis M., Finsterer J.. 2006; Staphylococcus warneri endocarditis after implantation of a lumbar disc prosthesis in an immunocompetent patient. J Infect52:e15e18 [CrossRef][PubMed]
    [Google Scholar]
  39. Taylor A. L., Cross E. L., Llewelyn M. J.. 2012; Induction of contact-dependent CD8(+) regulatory T cells through stimulation with staphylococcal and streptococcal superantigens. Immunology135:158–167 [CrossRef][PubMed]
    [Google Scholar]
  40. Torre D., Ferraro G., Fiori G. P., Martegani R., Speranza F., Tambini R., Zeroli C.. 1992; Ventriculoatrial shunt infection caused by Staphylococcus warneri: case report and review. Clin Infect Dis14:49–52 [CrossRef][PubMed]
    [Google Scholar]
  41. Valour F., Trouillet-Assant S., Rasigade J. P., Lustig S., Chanard E., Meugnier H., Tigaud S., Vandenesch F., Etienne J. et al. 2013; Staphylococcus epidermidis in orthopedic device infections: the role of bacterial internalization in human osteoblasts and biofilm formation. PLoS One8:e67240 [CrossRef][PubMed]
    [Google Scholar]
  42. Vaudaux P., Fleury B., Gjinovci A., Huggler E., Tangomo-Bento M., Lew D. P.. 2009; Comparison of tigecycline and vancomycin for treatment of experimental foreign-body infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother53:3150–3152 [CrossRef][PubMed]
    [Google Scholar]
  43. Vergidis P., Schmidt-Malan S. M., Mandrekar J. N., Steckelberg J. M., Patel R.. 2015; Comparative activities of vancomycin, tigecycline and rifampin in a rat model of methicillin-resistant Staphylococcus aureus osteomyelitis. J Infect70:609–615 [CrossRef][PubMed]
    [Google Scholar]
  44. Vernon J., Girardin N., Lacombe C., Berjeaud J. M., Héchard Y.. 2009; delta-hemolysin, an update on a membrane-interacting peptide. Peptides30:817–823 [CrossRef][PubMed]
    [Google Scholar]
  45. Versalovic J., Koeuth T., Lupski J. R.. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res19:6823–6831 [CrossRef][PubMed]
    [Google Scholar]
  46. von Eiff C., Arciola C. R., Montanaro L., Becker K., Campoccia D.. 2006; Emerging Staphylococcus species as new pathogens in implant infections. Int J Artif Organs29:360–367[PubMed]
    [Google Scholar]
  47. Wendlandt S., Feßler A. T., Monecke S., Ehricht R., Schwarz S., Kadlec K.. 2013; The diversity of antimicrobial resistance genes among staphylococci of animal origin. Int J Med Microbiol303:338–349 [CrossRef][PubMed]
    [Google Scholar]
  48. Woegerbauer M., Zeinzinger J., Springer B., Hufnagl P., Indra A., Korschineck I., Hofrichter J., Kopacka I., Fuchs R. et al. 2014; Prevalence of the aminoglycoside phosphotransferase genes aph(3′)-IIIa and aph(3′)-IIa in Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica and Staphylococcus aureus isolates in Austria. J Med Microbiol63:210–217 [CrossRef][PubMed]
    [Google Scholar]
  49. Wood C. A., Kamath U., Singer C., Isenberg H. D.. 1992; Significant infection caused by Staphylococcus warneri. J Clin Microbiol30:2216–2217[PubMed]
    [Google Scholar]
  50. Yin L. Y., Lazzarini L., Li F., Stevens C. M., Calhoun J. H.. 2005; Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. J Antimicrob Chemother55:995–1002 [CrossRef][PubMed]
    [Google Scholar]
  51. Zheng Z., Stewart P. S.. 2002; Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother46:900–903 [CrossRef][PubMed]
    [Google Scholar]
  52. Ziebuhr W., Hennig S., Eckart M., Kränzler H., Batzilla C., Kozitskaya S.. 2006; Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int Antimicrob Agents28:14–20 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000287
Loading
/content/journal/jmm/10.1099/jmm.0.000287
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error