1887

Abstract

Understanding how inhaled achieves dramatic replication and crosses the alveolar barrier to establish systemic latent infection, before adaptive immunity is elicited in humans, is limited by the small infecting inoculum carried in aerosol droplets (1–5 μm diameter) and the inability to identify the time of infection. is believed to disseminate via infected macrophages. However, like other invasive bacterial pathogens, could also cross the barrier directly using adhesins and toxins. An alveolar barrier mimicking the gas-exchange regions of the alveolus was devised comprising monolayers of human alveolar epithelial and endothelial cells cultured on opposing sides of a basement membrane. Migration of dissemination-competent strains of , and dissemination-attenuated and mutant strains lacking adhesin/toxin ESAT-6 and adhesin HBHA were tested for macrophage-free migration across the barrier. Strains that disseminate similarly migrated similarly across the alveolar barrier. Strains lacking ESAT-6 expression/secretion were attenuated, and absence of both ESAT-6 and HBHA increased attenuation of bacterial migration across the barrier. Thus, as reported for other bacteria, utilizes adhesins and toxins for macrophage-independent crossing of the alveolar barrier. This model will allow identification and characterization of molecules/mechanisms employed by to establish systemic latent tuberculosis infection during primary infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000238
2016-05-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/5/362.html?itemId=/content/journal/jmm/10.1099/jmm.0.000238&mimeType=html&fmt=ahah

References

  1. Ashiru O. T., Pillay M., Sturm A. W.. 2010; Adhesion to and invasion of pulmonary epithelial cells by the F15/LAM4/KZN and Beijing strains of Mycobacterium tuberculosis. J Med Microbiol59:528–533 [CrossRef][PubMed]
    [Google Scholar]
  2. Barrios-Payán J., Saqui-Salces M., Jeyanathan M., Alcántara-Vazquez A., Castañon-Arreola M., Rook G., Hernandez-Pando R.. 2012; Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection. J Infect Dis206:1194–1205 [CrossRef][PubMed]
    [Google Scholar]
  3. Bermudez L. E., Sangari F. J., Kolonoski P., Petrofsky M., Goodman J.. 2002; The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun70:140–146 [CrossRef][PubMed]
    [Google Scholar]
  4. Bierne H., Sabet C., Personnic N., Cossart P.. 2007; Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect9:1156–1166 [CrossRef][PubMed]
    [Google Scholar]
  5. Castro-Garza J., King C. H., Swords W. E., Quinn F. D.. 2002; Demonstration of spread by Mycobacterium tuberculosis bacilli in A549 epithelial cell monolayers. FEMS Microbiol Lett212:145–149 [CrossRef][PubMed]
    [Google Scholar]
  6. Caws M., Thwaites G., Dunstan S., Hawn T. R., Lan N. T. N., Thuong N. T. T., Stepniewska K., Huyen M. N. T., Bang N. D., other authors. 2008; The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog4:e1000034 [CrossRef][PubMed]
    [Google Scholar]
  7. Chackerian A. A., Alt J. M., Perera T. V., Dascher C. C., Behar S. M.. 2002; Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun70:4501–4509 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen S. M., Tsai Y. S., Wu C. M., Liao S. K., Wu L. C., Chang C. S., Liu Y. H., Tsai P. J.. 2010; Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell. BMC Microbiol10:320 [CrossRef][PubMed]
    [Google Scholar]
  9. Click E. S., Moonan P. K., Winston C. A., Cowan L. S., Oeltmann J. E.. 2012; Relationship between Mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clin Infect Dis54:211–219 [CrossRef][PubMed]
    [Google Scholar]
  10. Delogu G., Sanguinetti M., Posteraro B., Rocca S., Zanetti S., Fadda G.. 2006; The hbhA gene of Mycobacterium tuberculosis is specifically upregulated in the lungs but not in the spleens of aerogenically infected mice. Infect Immun74:3006–3011 [CrossRef][PubMed]
    [Google Scholar]
  11. Dobos K. M., Spotts E. A., Quinn F. D., King C. H.. 2000; Necrosis of lung epithelial cells during infection with Mycobacterium tuberculosis is preceded by cell permeation. Infect Immun68:6300–6310 [CrossRef][PubMed]
    [Google Scholar]
  12. Doran K. S., Banerjee A., Disson O., Lecuit M.. 2013; Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med3:a010090 [CrossRef][PubMed]
    [Google Scholar]
  13. Dramsi S., Bourdichon F., Cabanes D., Lecuit M., Fsihi H., Cossart P.. 2004; FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol53:639–649 [CrossRef][PubMed]
    [Google Scholar]
  14. Fontán P., Aris V., Ghanny S., Soteropoulos P., Smith I.. 2008; Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun76:717–725 [CrossRef][PubMed]
    [Google Scholar]
  15. Frigui W., Bottai D., Majlessi L., Monot M., Josselin E., Brodin P., Garnier T., Gicquel B., Martin C., other authors. 2008; Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog4:e33 [CrossRef][PubMed]
    [Google Scholar]
  16. Furuyama A., Mochitate K.. 2000; Assembly of the exogenous extracellular matrix during basement membrane formation by alveolar epithelial cells in vitro. J Cell Sci113:859–868[PubMed]
    [Google Scholar]
  17. Gagneux S., Small P. M.. 2007; Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis7:328–337 [CrossRef][PubMed]
    [Google Scholar]
  18. Guinn K. M., Hickey M. J., Mathur S. K., Zakel K. L., Grotzke J. E., Lewinsohn D. M., Smith S., Sherman D. R.. 2004; Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol51:359–370 [CrossRef][PubMed]
    [Google Scholar]
  19. Hernández-Pando R., Jeyanathan M., Mengistu G., Aguilar D., Orozco H., Harboe M., Rook G. A. W., Bjune G.. 2000; Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet356:2133–2138 [CrossRef][PubMed]
    [Google Scholar]
  20. Hernández-Pando R., Aguilar D., Cohen I., Guerrero M., Ribon W., Acosta P., Orozco H., Marquina B., Salinas C., other authors. 2010; Specific bacterial genotypes of Mycobacterium tuberculosis cause extensive dissemination and brain infection in an experimental model. Tuberculosis (Edinb)90:268–277 [CrossRef][PubMed]
    [Google Scholar]
  21. Hsu T., Hingley-Wilson S. M., Chen B., Chen M., Dai A. Z., Morin P. M., Marks C. B., Padiyar J., Goulding C., other authors. 2003; The primary mechanism of attenuation of bacillus Calmette-Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A100:12420–12425 [CrossRef][PubMed]
    [Google Scholar]
  22. Kinhikar A. G., Vargas D., Li H., Mahaffey S. B., Hinds L., Belisle J. T., Laal S.. 2006; Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol60:999–1013 [CrossRef][PubMed]
    [Google Scholar]
  23. Kinhikar A. G., Verma I., Chandra D., Singh K. K., Weldingh K., Andersen P., Hsu T., Jacobs W. R. Jr., Laal S.. 2010; Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol75:92–106 [CrossRef][PubMed]
    [Google Scholar]
  24. Kong Y., Cave M. D., Zhang L., Foxman B., Marrs C. F., Bates J. H., Yang Z. H.. 2007; Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J Clin Microbiol45:409–414 [CrossRef][PubMed]
    [Google Scholar]
  25. Kuo C. J., Bell H., Hsieh C. L., Ptak C. P., Chang Y. F.. 2012; Novel mycobacteria antigen 85 complex binding motif on fibronectin. J Biol Chem287:1892–1902 [CrossRef][PubMed]
    [Google Scholar]
  26. Laal S.. 2012; How does Mycobacterium tuberculosis establish infection?. J Infect Dis206:1157–1159 [CrossRef][PubMed]
    [Google Scholar]
  27. Lewis K. N., Liao R., Guinn K. M., Hickey M. J., Smith S., Behr M. A., Sherman D. R.. 2003; Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guérin attenuation. J Infect Dis187:117–123 [CrossRef][PubMed]
    [Google Scholar]
  28. Marriott H. M., Mitchell T. J., Dockrell D. H.. 2008; Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med8:497–509 [CrossRef][PubMed]
    [Google Scholar]
  29. McCormick B. A.. 2003; The use of transepithelial models to examine host-pathogen interactions. Curr Opin Microbiol6:77–81 [CrossRef][PubMed]
    [Google Scholar]
  30. McDonough K. A., Kress Y.. 1995; Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun63:4802–4811[PubMed]
    [Google Scholar]
  31. Mehta P. K., King C. H., White E. H., Murtagh J. J. Jr., Quinn F. D.. 1996; Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun64:2673–2679[PubMed]
    [Google Scholar]
  32. Neyrolles O., Hernández-Pando R., Pietri-Rouxel F., Fornès P., Tailleux L., Barrios Payán J. A., Pivert E., Bordat Y., Aguilar D., other authors. 2006; Is adipose tissue a place for Mycobacterium tuberculosis persistence?. PLoS One1:e43 [CrossRef][PubMed]
    [Google Scholar]
  33. Nobbs A. H., Lamont R. J., Jenkinson H. F.. 2009; Streptococcus adherence and colonization. Microbiol Mol Biol Rev73:407–450 [CrossRef][PubMed]
    [Google Scholar]
  34. Ordway D., Palanisamy G., Henao-Tamayo M., Smith E. E., Shanley C., Orme I. M., Basaraba R. J.. 2007; The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol179:2532–2541 [CrossRef][PubMed]
    [Google Scholar]
  35. Palanisamy G. S., Smith E. E., Shanley C. A., Ordway D. J., Orme I. M., Basaraba R. J.. 2008; Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. Tuberculosis (Edinb)88:295–306 [CrossRef][PubMed]
    [Google Scholar]
  36. Palanisamy G. S., DuTeau N., Eisenach K. D., Cave D. M., Theus S. A., Kreiswirth B. N., Basaraba R. J., Orme I. M.. 2009; Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs. Tuberculosis (Edinb)89:203–209 [CrossRef][PubMed]
    [Google Scholar]
  37. Pallen M. J.. 2002; The ESAT-6/WXG100 superfamily - and a new Gram-positive secretion system?. Trends Microbiol10:209–212 [CrossRef][PubMed]
    [Google Scholar]
  38. Pethe K., Alonso S., Biet F., Delogu G., Brennan M. J., Locht C., Menozzi F. D.. 2001; The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature412:190–194 [CrossRef][PubMed]
    [Google Scholar]
  39. Phillips J. R., Tripp T. J., Regelmann W. E., Schlievert P. M., Wangensteen O. D.. 2006; Staphylococcal alpha-toxin causes increased tracheal epithelial permeability. Pediatr Pulmonol41:1146–1152 [CrossRef][PubMed]
    [Google Scholar]
  40. Powers M. E., Kim H. K., Wang Y., Bubeck Wardenburg J.. 2012; ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis206:352–356 [CrossRef][PubMed]
    [Google Scholar]
  41. Richter J. F., Gitter A. H., Günzel D., Weiss S., Mohamed W., Chakraborty T., Fromm M., Schulzke J. D.. 2009; Listeriolysin O affects barrier function and induces chloride secretion in HT-29/B6 colon epithelial cells. Am J Physiol Gastrointest Liver Physiol296:G1350–G1359 [CrossRef][PubMed]
    [Google Scholar]
  42. Ryndak M., Wang S., Smith I.. 2008; PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol16:528–534 [CrossRef][PubMed]
    [Google Scholar]
  43. Ryndak M. B., Singh K. K., Peng Z., Zolla-Pazner S., Li H., Meng L., Laal S.. 2014; Transcriptional profiling of Mycobacterium tuberculosis replicating ex vivo in blood from HIV- and HIV+ subjects. PLoS One9:e94939 [CrossRef][PubMed]
    [Google Scholar]
  44. Ryndak M. B., Singh K. K., Peng Z., Laal S.. 2015; Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells. PLoS One10:e0123745 [CrossRef][PubMed]
    [Google Scholar]
  45. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D., other authors. 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med198:693–704 [CrossRef][PubMed]
    [Google Scholar]
  46. Sinha B., François P. P., Nüsse O., Foti M., Hartford O. M., Vaudaux P., Foster T. J., Lew D. P., Herrmann M., Krause K. H.. 1999; Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell Microbiol1:101–117 [CrossRef][PubMed]
    [Google Scholar]
  47. Soong G., Martin F. J., Chun J., Cohen T. S., Ahn D. S., Prince A.. 2011; Staphylococcus aureus protein A mediates invasion across airway epithelial cells through activation of RhoA GTPase signaling and proteolytic activity. J Biol Chem286:35891–35898 [CrossRef][PubMed]
    [Google Scholar]
  48. Suárez M., González-Zorn B., Vega Y., Chico-Calero I., Vázquez-Boland J. A.. 2001; A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol3:853–864 [CrossRef][PubMed]
    [Google Scholar]
  49. Vidal Pessolani M. C., de Melo Marques M. A., Reddy V. M., Locht C., Menozzi F. D.. 2003; Systemic dissemination in tuberculosis and leprosy: do mycobacterial adhesins play a role?. Microbes Infect5:677–684 [CrossRef][PubMed]
    [Google Scholar]
  50. Vir P., Gupta D., Agarwal R., Verma I.. 2014; Interaction of alveolar epithelial cells with CFP21, a mycobacterial cutinase-like enzyme. Mol Cell Biochem396:187–199 [CrossRef][PubMed]
    [Google Scholar]
  51. Wolf A. J., Desvignes L., Linas B., Banaiee N., Tamura T., Takatsu K., Ernst J. D.. 2008; Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med205:105–115 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000238
Loading
/content/journal/jmm/10.1099/jmm.0.000238
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error