1887

Abstract

Using a glutamate dehydrogenase (GDH) immunoassay and a sensitive toxin A/B immunoassay, human stool specimens from patients with diarrhoea ( = 1085) were classified as either GDH positive/toxin negative, or GDH positive/toxin positive. Overall, 528/725 (73%) of the GDH-positive/toxin-negative specimens contained viable , and 433/528 (82%) of these isolates were PCR positive for the toxin gene pathogenicity locus. Overall, 867/1078 (80%) of the GDH-positive specimens contained viable , and 433/725 (60%) of the GDH-positive/toxin-negative specimens contained a toxigenic strain. The diversity of toxigenic ribotypes isolated from toxin-negative specimens ( = 433) and toxin-positive specimens ( = 339) was significantly different ( < 0.0001). Specifically, the presence of ribotype 078 strains was very strongly associated ( < 0.0001) with detection of toxin in clinical specimens using a sensitive toxin immunoassay. Specimens positive for ribotype 078 were almost twice as likely to be toxin positive as opposed to toxin negative (risk ratio = 1.90, 95% confidence interval 1.64–2.19). In contrast, other circulating ribotypes were seen with similar frequency in specimens with and without detectable toxin. This supports the view that ribotype 078 strains may be more virulent than other common ribotypes in terms of toxin production.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000165
2015-11-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1341.html?itemId=/content/journal/jmm/10.1099/jmm.0.000165&mimeType=html&fmt=ahah

References

  1. Åkerlund T., Svenungsson B., Lagergren A., Burman L. G.. ( 2006;). Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. J Clin Microbiol 44: 353–358 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bacci S., Mølbak K., Kjeldsen M. K., Olsen K. E.. ( 2011;). Binary toxin and death after Clostridium difficile infection. Emerg Infect Dis 17: 976–982 [CrossRef] [PubMed].
    [Google Scholar]
  3. Clopper C. J., Pearson E. S.. ( 1934;). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26: 404–413 [CrossRef]
    [Google Scholar]
  4. Dean A. G., Arner T. G., Sunki G. G., Friedman R., Lantinga M., Sangam S., Zubieta J. C., Sullivan K. M., Brendel K. A., other authors. ( 2011;). Epi Info, a database and statistics program for public health professionals Atlanta, GA, USA::http://wwwn.cdc.gov/Epiinfo/7/index.htm CDC;.
    [Google Scholar]
  5. Eastwood K., Else P., Charlett A., Wilcox M.. ( 2009;). Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol 47: 3211–3217 [CrossRef] [PubMed].
    [Google Scholar]
  6. Freeman J., Baines S. D., Saxton K., Wilcox M. H.. ( 2007;). Effect of metronidazole on growth and toxin production by epidemic Clostridium difficile PCR ribotypes 001 and 027 in a human gut model. J Antimicrob Chemother 60: 83–91 [CrossRef] [PubMed].
    [Google Scholar]
  7. Goldenberg S. D., French G. L.. ( 2011;). Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile. J Infect 62: 355–362 [CrossRef] [PubMed].
    [Google Scholar]
  8. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Notermans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J.. ( 2008;). Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47: 1162–1170 [CrossRef] [PubMed].
    [Google Scholar]
  9. Haslam S. C., Ketley J. M., Mitchell T. J., Stephen J., Burdon D. W., Candy D. C. A.. ( 1986;). Growth of Clostridium difficile and production of toxins A and B in complex and defined media. J Med Microbiol 21: 293–297 [CrossRef] [PubMed].
    [Google Scholar]
  10. He M., Miyajima F., Roberts P., Ellison L., Pickard D. J., Martin M. J., Connor T. R., Harris S. R., Fairley D., other authors. ( 2013;). Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45: 109–113 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hensgens M. P., Kuijper E. J.. ( 2013;). Clostridium difficile infection caused by binary toxin-positive strains. Emerg Infect Dis 19: 1539–1540 [CrossRef] [PubMed].
    [Google Scholar]
  12. Jhung M. A., Thompson A. D., Killgore G. E., Zukowski W. E., Songer G., Warny M., Johnson S., Gerding D. N., McDonald L. C., Limbago B. M.. ( 2008;). Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis 14: 1039–1045 [CrossRef] [PubMed].
    [Google Scholar]
  13. Karlsson S., Burman L. G., Åkerlund T.. ( 1999;). Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145: 1683–1693 [CrossRef] [PubMed].
    [Google Scholar]
  14. Karlsson S., Lindberg A., Norin E., Burman L. G., Åkerlund T.. ( 2000;). Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun 68: 5881–5888 [CrossRef] [PubMed].
    [Google Scholar]
  15. Merrigan M., Venugopal A., Mallozzi M., Roxas B., Viswanathan V. K., Johnson S., Gerding D. N., Vedantam G.. ( 2010;). Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol 192: 4904–4911 [CrossRef] [PubMed].
    [Google Scholar]
  16. Mulvey M. R., Boyd D. A., Gravel D., Hutchinson J., Kelly S., McGeer A., Moore D., Simor A., Suh K. N., other authors. ( 2010;). Hypervirulent Clostridium difficile strains in hospitalized patients, Canada. Emerg Infect Dis 16: 678–681 [CrossRef] [PubMed].
    [Google Scholar]
  17. O'Neill G. L., Ogunsola F. T., Brazier J. S., Duerden B. I.. ( 1996;). Modification of a PCR ribotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe 2: 205–209 [CrossRef]
    [Google Scholar]
  18. Osgood D. P., Wood N. P., Sperry J. F.. ( 1993;). Nutritional aspects of cytotoxin production by Clostridium difficile. Appl Environ Microbiol 59: 3985–3988 [PubMed].
    [Google Scholar]
  19. Patterson L., Wilcox M. H., Fawley W. N., Verlander N. Q., Geoghegan L., Patel B. C., Wyatt T., Smyth B.. ( 2012;). Morbidity and mortality associated with Clostridium difficile ribotype 078: a case-case study. J Hosp Infect 82: 125–128 [CrossRef] [PubMed].
    [Google Scholar]
  20. Persson S., Torpdahl M., Olsen K. E. P.. ( 2008;). New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect 14: 1057–1064 [CrossRef] [PubMed].
    [Google Scholar]
  21. Planche T., Aghaizu A., Holliman R., Riley P., Poloniecki J., Breathnach A., Krishna S.. ( 2008;). Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis 8: 777–784 [CrossRef] [PubMed].
    [Google Scholar]
  22. Planche T. D., Davies K. A., Coen P. G., Finney J. M., Monahan I. M., Morris K. A., O'Connor L., Oakley S. J., Pope C. F., other authors. ( 2013;). Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C. difficile infection. Lancet Infect Dis 13: 936–945 [CrossRef] [PubMed].
    [Google Scholar]
  23. Robotham J., Wilcox M.. ( 2012;). Updated Guidance on Diagnosis and Reporting of Clostridium difficile London: Department of Health;.
    [Google Scholar]
  24. Stubbs S. L., Brazier J. S., O'Neill G. L., Duerden B. I.. ( 1999;). PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37: 461–463 [PubMed].
    [Google Scholar]
  25. UK Standards for Microbiology Investigations ( 2014;). Processing of faeces for Clostridium difficile; Bacteriology B10, Issue no. 15 London: Standards Unit, Microbiology Services, Public Health England;.
    [Google Scholar]
  26. Walk S. T., Micic D., Jain R., Lo E. S., Trivedi I., Liu E. W., Almassalha L. M., Ewing S. A., Ring C., other authors. ( 2012;). Clostridium difficile ribotype does not predict severe infection. Clin Infect Dis 55: 1661–1668 [CrossRef] [PubMed].
    [Google Scholar]
  27. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C.. ( 2005;). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366: 1079–1084 [CrossRef] [PubMed].
    [Google Scholar]
  28. Yamakawa K., Kamiya S., Meng X. Q., Karasawa T., Nakamura S.. ( 1994;). Toxin production by Clostridium difficile in a defined medium with limited amino acids. J Med Microbiol 41: 319–323 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000165
Loading
/content/journal/jmm/10.1099/jmm.0.000165
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error