1887

Abstract

The main components of oral malodour have been identified as volatile sulfur compounds (VSCs), including hydrogen sulfide (HS) and methyl mercaptan (CHSH). The lactoperoxidase (LPO) system (consisting of LPO, glucose oxidase, glucose and thiocyanate) was previously shown to exhibit antimicrobial activities against some oral bacteria and suppressive effects on VSCs in mouth air in a clinical trial. Here, we examined the effects of the LPO system on the activities of the bacterial lyases involved in the production of VSCs by oral anaerobes. The exposure of crude bacterial extracts of and or purified methionine γ-lyase to the LPO system resulted in the inactivation of their lyase activities through -cysteine and -methionine, which was linked to the production of HS and CHSH, respectively. The exposure of living and cells to the LPO system resulted in the suppression of cell numbers and lyase activities. The inactivation of the crude bacterial extracts of and purified methionine γ-lyase by the LPO system was partly recovered by the addition of DTT. Therefore, the LPO system may inactivate bacterial lyases including methionine γ-lyase by reacting with the free cysteine residues of lyases. These results suggested that the LPO system suppresses the production of VSCs not only through its antimicrobial effects, but also by its inactivating effects on the bacterial lyases of and .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000150
2015-10-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/10/1244.html?itemId=/content/journal/jmm/10.1099/jmm.0.000150&mimeType=html&fmt=ahah

References

  1. Adamson M. , Pruitt K. M. . ( 1981;). Lactoperoxidase-catalyzed inactivation of hexokinase. Biochim Biophys Acta 658: 238–247 [CrossRef] [PubMed].
    [Google Scholar]
  2. Boots J.-W. , Floris R. . ( 2006;). Lactoperoxidase: from catalytic mechanism to practical applications. Int Dairy J 16: 1272–1276 [CrossRef].
    [Google Scholar]
  3. Courtois P. , Majerus P. , Labbé M. , Vanden Abbeele A. , Yourassowsky E. , Pourtois M. . ( 1992;). Susceptibility of anaerobic microorganisms to hypothiocyanite produced by lactoperoxidase. Acta Stomatol Belg 89: 155–162 [PubMed].
    [Google Scholar]
  4. Fukamachi H. , Nakano Y. , Yoshimura M. , Koga T. . ( 2002;). Cloning and characterization of the l-cysteine desulfhydrase gene of Fusobacterium nucleatum . FEMS Microbiol Lett 215: 75–80 [PubMed].
    [Google Scholar]
  5. Hamon C. B. , Klebanoff S. J. . ( 1973;). A peroxidase-mediated, Streptococcus mitis-dependent antimicrobial system in saliva. J Exp Med 137: 438–450 [CrossRef] [PubMed].
    [Google Scholar]
  6. Humphrey S. P. , Williamson R. T. . ( 2001;). A review of saliva: normal composition, flow, and function. J Prosthet Dent 85: 162–169 [CrossRef] [PubMed].
    [Google Scholar]
  7. Ihalin R. , Loimaranta V. , Lenander-Lumikari M. , Tenovuo J. . ( 2001;). The sensitivity of Porphyromonas gingivalis and Fusobacterium nucleatum to different (pseudo)halide-peroxidase combinations compared with mutans streptococci. J Med Microbiol 50: 42–48 [PubMed].[CrossRef]
    [Google Scholar]
  8. Imai T. , Ii H. , Yaegaki K. , Murata T. , Sato T. , Kamoda T. . ( 2009;). Oral malodorous compound inhibits osteoblast proliferation. J Periodontol 80: 2028–2034 [CrossRef] [PubMed].
    [Google Scholar]
  9. Johnson P. , Yaegaki K. , Tonzetich J. . ( 1996;). Effect of methyl mercaptan on synthesis and degradation of collagen. J Periodontal Res 31: 323–329 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kudou D. , Misaki S. , Yamashita M. , Tamura T. , Takakura T. , Yoshioka T. , Yagi S. , Hoffman R. M. , Takimoto A. , other authors . ( 2007;). Structure of the antitumour enzyme l-methionine γ-lyase from Pseudomonas putida at 1.8 A resolution. J Biochem 141: 535–544 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kudou D. , Misaki S. , Yamashita M. , Tamura T. , Esaki N. , Inagaki K. . ( 2008;). The role of cysteine 116 in the active site of the antitumor enzyme l-methionine γ-lyase from Pseudomonas putida . Biosci Biotechnol Biochem 72: 1722–1730 [CrossRef] [PubMed].
    [Google Scholar]
  12. Law B. A. , John P. . ( 1981;). Effect of the lactoperoxidase bactericidal system on the formation of the electrochemical proton gradient in E. coli . FEMS Microbiol Lett 10: 67–70 [CrossRef].
    [Google Scholar]
  13. Loesche W. J. , Kazor C. . ( 2002;). Microbiology and treatment of halitosis. Periodontol 2000 28: 256–279 [CrossRef] [PubMed].
    [Google Scholar]
  14. Mickelson M. N. . ( 1977;). Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide. J Bacteriol 132: 541–548 [PubMed].
    [Google Scholar]
  15. Nakano Y. , Yoshimura M. , Koga T. . ( 2002;). Correlation between oral malodor and periodontal bacteria. Microbes Infect 4: 679–683 [CrossRef] [PubMed].
    [Google Scholar]
  16. Nakayama T. , Esaki N. , Tanaka H. , Soda K. . ( 1988;). Chemical modification of cysteine residues of l-methionine γ-lyase. Agric Biol Chem 52: 177–183 [CrossRef].
    [Google Scholar]
  17. Ng W. , Tonzetich J. . ( 1984;). Effect of hydrogen sulfide and methyl mercaptan on the permeability of oral mucosa. J Dent Res 63: 994–997 [CrossRef] [PubMed].
    [Google Scholar]
  18. Pruitt K. M. , Mansson-Rahemtulla B. , Tenovuo J. . ( 1983;). Detection of the hypothiocyanite (OSCN-) ion in human parotid saliva and the effect of pH on OSCN- generation in the salivary peroxidase antimicrobial system. Arch Oral Biol 28: 517–525 [CrossRef] [PubMed].
    [Google Scholar]
  19. Quirynen M. , Zhao H. , van Steenberghe D. . ( 2002;). Review of the treatment strategies for oral malodour. Clin Oral Investig 6: 1–10 [PubMed].
    [Google Scholar]
  20. Sharma S. , Singh A. K. , Kaushik S. , Sinha M. , Singh R. P. , Sharma P. , Sirohi H. , Kaur P. , Singh T. P. . ( 2013;). Lactoperoxidase: structural insights into the function, ligand binding and inhibition. Int J Biochem Mol Biol 4: 108–128 [PubMed].
    [Google Scholar]
  21. Shin K. , Hayasawa H. , Lönnerdal B. . ( 2001;). Inhibition of Escherichia coli respiratory enzymes by the lactoperoxidase-hydrogen peroxide-thiocyanate antimicrobial system. J Appl Microbiol 90: 489–493 [CrossRef] [PubMed].
    [Google Scholar]
  22. Shin K. , Yamauchi K. , Teraguchi S. , Hayasawa H. , Imoto I. . ( 2002;). Susceptibility of Helicobacter pylori and its urease activity to the peroxidase-hydrogen peroxide-thiocyanate antimicrobial system. J Med Microbiol 51: 231–237 [PubMed].[CrossRef]
    [Google Scholar]
  23. Shin K. , Horigome A. , Wakabayashi H. , Yamauchi K. , Yaeshima T. , Iwatsuki K. . ( 2008;). In vitro and in vivo effects of a composition containing lactoperoxidase on oral bacteria and breath odor. J Breath Res 2: 017014.[CrossRef]
    [Google Scholar]
  24. Shin K. , Yaegaki K. , Murata T. , Ii H. , Tanaka T. , Aoyama I. , Yamauchi K. , Toida T. , Iwatsuki K. . ( 2011;). Effects of a composition containing lactoferrin and lactoperoxidase on oral malodor and salivary bacteria: a randomized, double-blind, crossover, placebo-controlled clinical trial. Clin Oral Investig 15: 485–493 [CrossRef] [PubMed].
    [Google Scholar]
  25. Soda K. . ( 1967;). A spectrophotometric microdetermination of keto acids with 3-methyl-2-benzothiazolone hydrazone. Agric Biol Chem 31: 1054–1060 [CrossRef].
    [Google Scholar]
  26. Suwabe K. , Yoshida Y. , Nagano K. , Yoshimura F. . ( 2011;). Identification of an l-methionine γ-lyase involved in the production of hydrogen sulfide from l-cysteine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology 157: 2992–3000 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tenovuo J. , Mäkinen K. K. , Sievers G. . ( 1985;). Antibacterial effect of lactoperoxidase and myeloperoxidase against Bacillus cereus . Antimicrob Agents Chemother 27: 96–101 [CrossRef] [PubMed].
    [Google Scholar]
  28. Thomas E. L. . ( 1981;). Lactoperoxidase-catalyzed oxidation of thiocyanate: equilibria between oxidized forms of thiocyanate. Biochemistry 20: 3273–3280 [CrossRef] [PubMed].
    [Google Scholar]
  29. Thomas E. L. , Aune T. M. . ( 1978;). Lactoperoxidase, peroxide, thiocyanate antimicrobial system: correlation of sulfhydryl oxidation with antimicrobial action. Infect Immun 20: 456–463 [PubMed].
    [Google Scholar]
  30. Thomas E. L. , Pera K. A. , Smith K. W. , Chwang A. K. . ( 1983;). Inhibition of Streptococcus mutans by the lactoperoxidase antimicrobial system. Infect Immun 39: 767–778 [PubMed].
    [Google Scholar]
  31. Thomas E. L. , Bozeman P. M. , Learn D. B. . ( 1991;). Lactoperoxidase: structure and catalytic properties. . In Peroxidases in Chemistry and Biology, vol. 1 , pp. 123–142. Edited by Grisham M. B. , Everse J. . Boca Raton, FL: CRC Press;.
    [Google Scholar]
  32. Yoshimura M. , Nakano Y. , Yamashita Y. , Oho T. , Saito T. , Koga T. . ( 2000;). Formation of methyl mercaptan from l-methionine by Porphyromonas gingivalis . Infect Immun 68: 6912–6916 [CrossRef] [PubMed].
    [Google Scholar]
  33. Yoshimura M. , Nakano Y. , Fukamachi H. , Koga T. . ( 2002;). 3-Chloro-dl-alanine resistance by l-methionine-α-deamino-γ-mercaptomethane-lyase activity. FEBS Lett 523: 119–122 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000150
Loading
/content/journal/jmm/10.1099/jmm.0.000150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error