1887

Abstract

Global spread and evolutionary links of an epidemic strain (PCR-ribotype 027) have been noted in recent decades. However, in Japan, no outbreaks caused by type 027 have been reported to date. A total of 120 isolates from patients at 15 hospitals during non-outbreak seasons between 2011 and 2013 as well as 18 and 21 isolates collected from two hospitals in 2010 and 2009, respectively, in outbreak periods in Japan, were examined. Among these 120 isolates, Japan-ribotypes smz and ysmz (subtype variant of smz) were the most predominant (39.2 %) followed by Japan-ribotype trf (15.8 %). Types smz/ysmz and trf were also concurrently predominant at two hospitals in the outbreak settings. Out of the five binary toxin-positive isolates observed, only one was PCR-ribotype 027 and another PCR-ribotype 078. Type smz was later found to correspond to PCR-ribotype 018. High rates of resistance against gatifloxacin, moxifloxacin, erythromycin and clindamycin were observed in the PCR-ribotype 018 isolates. Interestingly, all trf isolates were toxin A-negative, toxin B-positive, but they did not correspond to PCR-ribotype 017, thus being assigned a new ribotype (PCR-ribotype 369). In conclusion, PCR-ribotypes 018 (smz) and 369 (trf) were identified as major circulating strains in both outbreak and non-outbreak settings in Japan. Given their epidemiological relevance, molecular investigations are warranted to clarify potential evolutionary links with related strains found elsewhere, such as PCR-ribotypes 018 and 017 from Europe and North America.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000149
2015-10-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/10/1226.html?itemId=/content/journal/jmm/10.1099/jmm.0.000149&mimeType=html&fmt=ahah

References

  1. Bauer M. P., Notermans D. W., van Benthem B. H., Brazier J. S., Wilcox M. H., Rupnik M., Monnet D. L., van Dissel J. T., Kuijper E. J. 2011; Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73 [CrossRef][PubMed]
    [Google Scholar]
  2. Cheng V. C., Yam W. C., Lam O. T., Tsang J. L., Tse E. Y., Siu G. K., Chan J. F., Tse H., To K. K., other authors. 2011; Clostridium difficile isolates with increased sporulation: emergence of PCR ribotype 002 in Hong Kong. Eur J Clin Microbiol Infect Dis 30:1371–1381 [CrossRef][PubMed]
    [Google Scholar]
  3. CLSI 2014 Performance Standards for Antimicrobial Susceptibility Testing; 24th Informational Supplement M100–S24 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  4. Davies K. A., Longshaw C. M., Davis G. L., Bouza E., Barbut F., Barna Z., Delmée M., Fitzpatrick F., Ivanova K., other authors. 2014; Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis 14:1208–1219 [CrossRef][PubMed]
    [Google Scholar]
  5. Drudy D., Harnedy N., Fanning S., O'Mahony R., Kyne L. 2007; Isolation and characterisation of toxin A-negative, toxin B-positive Clostridium difficile in Dublin, Ireland. Clin Microbiol Infect 13:298–304 [CrossRef][PubMed]
    [Google Scholar]
  6. Freeman J., Vernon J., Morris K., Nicholson S., Todhunter S., Longshaw C., Wilcox M. H. 2015; Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect 21:248.e9-e16 [CrossRef]
    [Google Scholar]
  7. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Noter`mans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J. 2008; Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170 [CrossRef][PubMed]
    [Google Scholar]
  8. Goorhuis A., Legaria M. C., van den Berg R. J., Harmanus C., Klaassen C. H., Brazier J. S., Lumelsky G., Kuijper E. J. 2009; Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires, Argentina. Clin Microbiol Infect 15:1080–1086 [CrossRef][PubMed]
    [Google Scholar]
  9. Han S. H., Kim H., Lee K., Jeong S. J., Park K. H., Song J. Y., Seo Y. B., Choi J. Y., Woo J. H., other authors. 2014; Epidemiology and clinical features of toxigenic culture-confirmed hospital-onset Clostridium difficile infection: a multicentre prospective study in tertiary hospitals of South Korea. J Med Microbiol 63:1542–1551 [CrossRef][PubMed]
    [Google Scholar]
  10. Hawkey P. M., Marriott C., Liu W. E., Jian Z. J., Gao Q., Ling T. K., Chow V., So E., Chan R., other authors. 2013; Molecular epidemiology of Clostridium difficile infection in a major Chinese hospital: an underrecognized problem in Asia?. J Clin Microbiol 51:3308–3313 [CrossRef][PubMed]
    [Google Scholar]
  11. He M., Miyajima F., Roberts P., Ellison L., Pickard D. J., Martin M. J., Connor T. R., Harris S. R., Fairley D., other authors. 2013; Emergence and global spread of epidemic healthcare-associated Clostridium difficile . Nat Genet 45:109–113 [CrossRef][PubMed]
    [Google Scholar]
  12. Iwashima Y., Nakamura A., Kato H., Wakimoto Y., Wakiyama N., Kaji C., Ueda R. 2010; A retrospective study of the epidemiology of Clostridium difficile infection at a University Hospital in Japan: genotypic features of the isolates and clinical characteristics of the patients. J Infect Chemother 16:329–333 [CrossRef][PubMed]
    [Google Scholar]
  13. Janezic S., Zidaric V., Pardon B., Indra A., Kokotovic B., Blanco J. L., Seyboldt C., Diaz C. R., Poxton I. R., other authors. 2014; International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol 14:173–183 [CrossRef][PubMed]
    [Google Scholar]
  14. Kato H., Kato N., Watanabe K., Yamamoto T., Suzuki K., Ishigo S., Kunihiro S., Nakamura I., Killgore G. E., Nakamura S. 2001a; Analysis of Clostridium difficile isolates from nosocomial outbreaks at three hospitals in diverse areas of Japan. J Clin Microbiol 39:1391–1395 [CrossRef][PubMed]
    [Google Scholar]
  15. Kato H., Kita H., Karasawa T., Maegawa T., Koino Y., Takakuwa H., Saikai T., Kobayashi K., Yamagishi T., Nakamura S. 2001b; Colonisation and transmission of Clostridium difficile in healthy individuals examined by PCR ribotyping and pulsed-field gel electrophoresis. J Med Microbiol 50:720–727[PubMed] [CrossRef]
    [Google Scholar]
  16. Kato H., Yokoyama T., Kato H., Arakawa Y. 2005; Rapid and simple method for detecting the toxin B gene of Clostridium difficile in stool specimens by loop-mediated isothermal amplification. J Clin Microbiol 43:6108–6112 [CrossRef][PubMed]
    [Google Scholar]
  17. Kato H., Ito Y., van den Berg R. J., Kuijper E. J., Arakawa Y. 2007; First isolation of Clostridium difficile 027 in Japan. Euro Surveill 12:E070111–E070113[PubMed]
    [Google Scholar]
  18. Kato H., Kato H., Ito Y., Akahane T., Izumida S., Yokoyama T., Kaji C., Arakawa Y. 2010; Typing of Clostridium difficile isolates endemic in Japan by sequencing of slpA and its application to direct typing. J Med Microbiol 59:556–562 [CrossRef][PubMed]
    [Google Scholar]
  19. Killgore G., Thompson A., Johnson S., Brazier J., Kuijper E., Pepin J., Frost E. H., Savelkoul P., Nicholson B., other authors. 2008; Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J Clin Microbiol 46:431–437 [CrossRef][PubMed]
    [Google Scholar]
  20. Komatsu M., Kato H., Aihara M., Shimakawa K., Iwasaki M., Nagasaka Y., Fukuda S., Matsuo S., Arakawa Y., other authors. 2003; High frequency of antibiotic-associated diarrhea due to toxin A-negative, toxin B-positive Clostridium difficile in a hospital in Japan and risk factors for infection. Eur J Clin Microbiol Infect Dis 22:525–529 [CrossRef][PubMed]
    [Google Scholar]
  21. Kuijper E. J., de Weerdt J., Kato H., Kato N., van Dam A. P., van der Vorm E. R., Weel J., van Rheenen C., Dankert J. 2001; Nosocomial outbreak of Clostridium difficile-associated diarrhoea due to a clindamycin-resistant enterotoxin A-negative strain. Eur J Clin Microbiol Infect Dis 20:528–534 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee J. H., Lee Y., Lee K., Riley T. V., Kim H. 2014; The changes of PCR ribotype and antimicrobial resistance of Clostridium difficile in a tertiary care hospital over 10 years. J Med Microbiol 63:819–823 [CrossRef][PubMed]
    [Google Scholar]
  23. Louie T. J., Miller M. A., Mullane K. M., Weiss K., Lentnek A., Golan Y., Gorbach S., Sears P., Shue Y. K., OPT-80-003 Clinical Study Group. 2011; Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431 [CrossRef][PubMed]
    [Google Scholar]
  24. Miller M., Gravel D., Mulvey M., Taylor G., Boyd D., Simor A., Gardam M., McGeer A., Hutchinson J., other authors. 2010; Health care-associated Clostridium difficile infection in Canada: patient age and infecting strain type are highly predictive of severe outcome and mortality. Clin Infect Dis 50:194–201 [CrossRef][PubMed]
    [Google Scholar]
  25. Nishimura S., Kou T., Kato H., Watanabe M., Uno S., Senoh M., Fukuda T., Hata A., Yazumi S. 2014; Fulminant pseudomembranous colitis caused by Clostridium difficile PCR ribotype 027 in a healthy young woman in Japan. J Infect Chemother 20:729–731 [CrossRef][PubMed]
    [Google Scholar]
  26. Niwa H., Kato H., Hobo S., Kinoshita Y., Ueno T., Katayama Y., Hariu K., Oku K., Senoh M., other authors. 2013; Postoperative Clostridium difficile infection with PCR ribotype 078 strain identified at necropsy in five Thoroughbred racehorses. Vet Rec 173:607–613 [CrossRef][PubMed]
    [Google Scholar]
  27. Pasquale V., Romano V., Rupnik M., Capuano F., Bove D., Aliberti F., Krovacek K., Dumontet S. 2012; Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol 31:309–312 [CrossRef][PubMed]
    [Google Scholar]
  28. Pituch H., Obuch-Woszczatyński P., Wultańska D., Nurzyńska G., Harmanus C., Banaszkiewicz A., Radzikowski A., Łuczak M., van Belkum A., Kuijper E. 2011; Characterization and antimicrobial susceptibility of Clostridium difficile strains isolated from adult patients with diarrhoea hospitalized in two university hospitals in Poland, 2004-2006. J Med Microbiol 60:1200–1205 [CrossRef][PubMed]
    [Google Scholar]
  29. Sato H., Kato H., Koiwai K., Sakai C. 2004; [A nosocomial outbreak of diarrhea caused by toxin A-negative, toxin B-positive Clostridium difficile in a cancer center hospital]. Kansenshogaku Zasshi 78:312–319 (in Japanese) [CrossRef][PubMed]
    [Google Scholar]
  30. Sawabe E., Kato H., Osawa K., Chida T., Tojo N., Arakawa Y., Okamura N. 2007; Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: a shift in the predominant type over a five-year period. Eur J Clin Microbiol Infect Dis 26:695–703 [CrossRef][PubMed]
    [Google Scholar]
  31. Shin B. M., Kuak E. Y., Yoo H. M., Kim E. C., Lee K., Kang J. O., Whang D. H., Shin J. H. 2008; Multicentre study of the prevalence of toxigenic Clostridium difficile in Korea: results of a retrospective study 2000–2005. J Med Microbiol 57:697–701 [CrossRef][PubMed]
    [Google Scholar]
  32. Spigaglia P., Barbanti F., Dionisi A. M., Mastrantonio P. 2010; Clostridium difficile isolates resistant to fluoroquinolones in Italy: emergence of PCR ribotype 018. J Clin Microbiol 48:2892–2896 [CrossRef][PubMed]
    [Google Scholar]
  33. Spigaglia P., Barbanti F., Mastrantonio P., Ackermann G., Balmelli C., Barbut F., Bouza E., Brazier J., Delmee M., other authors. 2011; Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother 66:2227–2234 [CrossRef][PubMed]
    [Google Scholar]
  34. Stubbs S. L., Brazier J. S., O'Neill G. L., Duerden B. I. 1999; PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463[PubMed]
    [Google Scholar]
  35. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M. 2000; Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile . FEMS Microbiol Lett 186:307–312 [CrossRef][PubMed]
    [Google Scholar]
  36. Tenover F. C., Novak-Weekley S., Woods C. W., Peterson L. R., Davis T., Schreckenberger P., Fang F. C., Dascal A., Gerding D. N., other authors. 2010; Impact of strain type on detection of toxigenic Clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J Clin Microbiol 48:3719–3724 [CrossRef][PubMed]
    [Google Scholar]
  37. Tenover F. C., Tickler I. A., Persing D. H. 2012; Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob Agents Chemother 56:2929–2932 [CrossRef][PubMed]
    [Google Scholar]
  38. Tickler I. A., Goering R. V., Whitmore J. D., Lynn A. N., Persing D. H., Tenover F. C., Healthcare Associated Infection Consortium. 2014; Strain types and antimicrobial resistance patterns of Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob Agents Chemother 58:4214–4218 [CrossRef][PubMed]
    [Google Scholar]
  39. Usui M., Nanbu Y., Oka K., Takahashi M., Inamatsu T., Asai T., Kamiya S., Tamura Y. 2014; Genetic relatedness between Japanese and European isolates of Clostridium difficile originating from piglets and their risk associated with human health. Front Microbiol 5:513–521 [CrossRef][PubMed]
    [Google Scholar]
  40. Walker A. S., Eyre D. W., Wyllie D. H., Dingle K. E., Griffiths D., Shine B., Oakley S., O'Connor L., Finney J., other authors. 2013; Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin Infect Dis 56:1589–1600 [CrossRef][PubMed]
    [Google Scholar]
  41. Wilcox M. H., Shetty N., Fawley W. N., Shemko M., Coen P., Birtles A., Cairns M., Curran M. D., Dodgson K. J., other authors. 2012; Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis 55:1056–1063 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000149
Loading
/content/journal/jmm/10.1099/jmm.0.000149
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error