1887

Abstract

has become one of the major infection threats in intensive care units (ICUs) globally. Since 2008, has been the leading cause of ventilator-associated pneumonia (VAP) in our ICU at an infectious disease hospital in southern Vietnam. The emergence of this pathogen in our setting is consistent with the persistence of a specific clone exhibiting resistance to carbapenems. Antimicrobial combinations may be a strategy to treat infections caused by these carbapenem-resistant . Therefore, we assessed potential antimicrobial combinations against local carbapenem-resistant by measuring interactions of colistin with four antimicrobials that are locally certified for treating VAP. We first performed antimicrobial susceptibility testing and multilocus variable number tandem repeat analysis (MLVA) genotyping on 74 isolated from quantitative tracheal aspirates from patients with VAP over an 18-month period. These 74 isolates could be subdivided into 21 main clusters by MLVA and >80 % were resistant to carbapenems. We selected 56 representative isolates for combination synergy testing. Synergy was observed in four (7 %), seven (13 %), 20 (36 %) and 38 (68 %) isolates with combinations of colistin with ceftazidime, ceftriaxone, imipenem and meropenem, respectively. Notably, more carbapenem-resistant isolates (36/43; 84 %) exhibited synergistic activity with a combination of colistin and meropenem than carbapenem-susceptible isolates (2/13; 15 %) ( = 0.023; Fisher's exact test). Our findings suggest that combinations of colistin and meropenem should be considered when treating carbapenem-resistant infections in Vietnam, and we advocate clinical trials investigating combination therapy for VAP.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000137
2015-10-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/10/1162.html?itemId=/content/journal/jmm/10.1099/jmm.0.000137&mimeType=html&fmt=ahah

References

  1. Adams M. D., Nickel G. C., Bajaksouzian S., Lavender H., Murthy A. R., Jacobs M. R., Bonomo R. A.. ( 2009;). Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53: 3628–3634 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barnaud G., Zihoune N., Ricard J. D., Hippeaux M. C., Eveillard M., Dreyfuss D., Branger C.. ( 2010;). Two sequential outbreaks caused by multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 or OXA-72 oxacillinase in an intensive care unit in France. J Hosp Infect 76: 358–360 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bergogne-Bérézin E., Towner K. J.. ( 1996;). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9: 148–165 [PubMed].
    [Google Scholar]
  4. Choi W. S., Kim S. H., Jeon E. G., Son M. H., Yoon Y. K., Kim J. Y., Kim M. J., Sohn J. W., Kim M. J., Park D. W.. ( 2010;). Nosocomial outbreak of carbapenem-resistant Acinetobacter baumannii in intensive care units and successful outbreak control program. J Korean Med Sci 25: 999–1004 [CrossRef] [PubMed].
    [Google Scholar]
  5. CLSI ( 2012;). Performance Standards for Antimicrobial Susceptibility Testing 20th informational supplement Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  6. De Pascale G., Pompucci A., Maviglia R., Spanu T., Bello G., Mangiola A., Scoppettuolo G.. ( 2010;). Successful treatment of multidrug-resistant Acinetobacter baumannii ventriculitis with intrathecal and intravenous colistin. Minerva Anestesiol 76: 957–960 [PubMed].
    [Google Scholar]
  7. Gordon N. C., Png K., Wareham D. W.. ( 2010;). Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 54: 5316–5322 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gunderson B. W., Ibrahim K. H., Hovde L. B., Fromm T. L., Reed M. D., Rotschafer J. C.. ( 2003;). Synergistic activity of colistin and ceftazidime against multiantibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 47: 905–909 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hall M. J., Middleton R. F., Westmacott D.. ( 1983;). The fractional inhibitory concentration (FIC) index as a measure of synergy. J Antimicrob Chemother 11: 427–433 [CrossRef] [PubMed].
    [Google Scholar]
  10. Jung J. Y., Park M. S., Kim S. E., Park B. H., Son J. Y., Kim E. Y., Lim J. E., Lee S. K., Lee S. H., other authors. ( 2010;). Risk factors for multi-drug resistant Acinetobacter baumannii bacteremia in patients with colonization in the intensive care unit. BMC Infect Dis 10: 228 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kim Y. J., Kim S. I., Kim Y. R., Hong K. W., Wie S. H., Park Y. J., Jeong H., Kang M. W.. ( 2012;). Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanisms and risk factors for infection. Epidemiol Infect 140: 137–145 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kiratisin P., Apisarnthanarak A., Kaewdaeng S.. ( 2010;). Synergistic activities between carbapenems and other antimicrobial agents against Acinetobacter baumannii including multidrug-resistant and extensively drug-resistant isolates. Int J Antimicrob Agents 36: 243–246 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kofteridis D. P., Alexopoulou C., Valachis A., Maraki S., Dimopoulou D., Georgopoulos D., Samonis G.. ( 2010;). Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case–control study. Clin Infect Dis 51: 1238–1244 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kroeger L. A., Hovde L. B., Mitropoulos I. F., Schafer J., Rotschafer J. C.. ( 2007;). Colistin methanesulfonate against multidrug-resistant Acinetobacter baumannii in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 51: 3431–3433 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kruse A. Y., Thieu Chuong H., Phuong C. N., Duc T., Graff Stensballe L., Prag J., Kurtzhals J., Greisen G., Pedersen F. K.. ( 2013;). Neonatal bloodstream infections in a pediatric hospital in Vietnam: a cohort study. J Trop Pediatr 59: 483–488 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lim S. K., Lee S. O., Choi S. H., Choi J. P., Kim S. H., Jeong J. Y., Choi S. H., Woo J. H., Kim Y. S.. ( 2011a;). The outcomes of using colistin for treating multidrug resistant Acinetobacter species bloodstream infections. J Korean Med Sci 26: 325–331 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lim T. P., Tan T. Y., Lee W., Sasikala S., Tan T. T., Hsu L. Y., Kwa A. L.. ( 2011b;). In-vitro activity of polymyxin B, rifampicin, tigecycline alone and in combination against carbapenem-resistant Acinetobacter baumannii in Singapore. PLoS One 6: e18485 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lin C. C., Liu T. C., Kuo C. F., Liu C. P., Lee C. M.. ( 2010;). Aerosolized colistin for the treatment of multidrug-resistant Acinetobacter baumannii pneumonia: experience in a tertiary care hospital in northern Taiwan. J Microbiol Immunol Infect 43: 323–331 [CrossRef] [PubMed].
    [Google Scholar]
  19. López-Rojas R., Domínguez-Herrera J., McConnell M. J., Docobo-Peréz F., Smani Y., Fernández-Reyes M., Rivas L., Pachón J.. ( 2011;). Impaired virulence and in vivo fitness of colistin-resistant Acinetobacter baumannii. J Infect Dis 203: 545–548 [CrossRef] [PubMed].
    [Google Scholar]
  20. McGrath E. J., Chopra T., Abdel-Haq N., Preney K., Koo W., Asmar B. I., Kaye K. S.. ( 2011;). An outbreak of carbapenem-resistant Acinetobacter baumannii infection in a neonatal intensive care unit: investigation and control. Infect Control Hosp Epidemiol 32: 34–41 [CrossRef] [PubMed].
    [Google Scholar]
  21. Moffatt J. H., Harper M., Harrison P., Hale J. D., Vinogradov E., Seemann T., Henry R., Crane B., St Michael F., other authors. ( 2010;). Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54: 4971–4977 [CrossRef] [PubMed].
    [Google Scholar]
  22. Moffatt J. H., Harper M., Adler B., Nation R. L., Li J., Boyce J. D.. ( 2011;). Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother 55: 3022–3024 [CrossRef] [PubMed].
    [Google Scholar]
  23. Nakwan N., Wannaro J., Thongmak T., Pornladnum P., Saksawad R., Nakwan N., Chokephaibulkit K.. ( 2011;). Safety in treatment of ventilator-associated pneumonia due to extensive drug-resistant Acinetobacter baumannii with aerosolized colistin in neonates: a preliminary report. Pediatr Pulmonol 46: 60–66 [CrossRef] [PubMed].
    [Google Scholar]
  24. Nhu N. T., Lan N. P., Campbell J. I., Parry C. M., Thompson C., Tuyen H. T., Hoang N. V., Tam P. T., Le V. M., other authors. ( 2014;). Emergence of carbapenem-resistant Acinetobacter baumannii as the major cause of ventilator-associated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J Med Microbiol 63: 1386–1394 [CrossRef] [PubMed].
    [Google Scholar]
  25. Park Y. K., Jung S. I., Park K. H., Cheong H. S., Peck K. R., Song J. H., Ko K. S.. ( 2009;). Independent emergence of colistin-resistant Acinetobacter spp. isolates from Korea. Diagn Microbiol Infect Dis 64: 43–51 [CrossRef] [PubMed].
    [Google Scholar]
  26. Paul M., Benuri-Silbiger I., Soares-Weiser K., Leibovici L.. ( 2004;). β-Lactam monotherapy versus β-lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328: 668 [CrossRef] [PubMed].
    [Google Scholar]
  27. Peleg A. Y., Seifert H., Paterson D. L.. ( 2008;). Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21: 538–582 [CrossRef] [PubMed].
    [Google Scholar]
  28. Petersen P. J., Labthavikul P., Jones C. H., Bradford P. A.. ( 2006;). In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time‐kill kinetic analysis. J Antimicrob Chemother 57: 573–576 [CrossRef] [PubMed].
    [Google Scholar]
  29. Petrosillo N., Ioannidou E., Falagas M. E.. ( 2008;). Colistin monotherapy vs. combination therapy: evidence from microbiological, animal and clinical studies. Clin Microbiol Infect 14: 816–827 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pourcel C., Minandri F., Hauck Y., D'Arezzo S., Imperi F., Vergnaud G., Visca P.. ( 2011;). Identification of variable-number tandem-repeat (VNTR) sequences in Acinetobacter baumannii and interlaboratory validation of an optimized multiple-locus VNTR analysis typing scheme. J Clin Microbiol 49: 539–548 [CrossRef] [PubMed].
    [Google Scholar]
  31. Rodriguez C. H., Bombicino K., Granados G., Nastro M., Vay C., Famiglietti A.. ( 2009;). Selection of colistin-resistant Acinetobacter baumannii isolates in postneurosurgical meningitis in an intensive care unit with high presence of heteroresistance to colistin. Diagn Microbiol Infect Dis 65: 188–191 [CrossRef] [PubMed].
    [Google Scholar]
  32. Schultsz C., Bootsma M. C., Loan H. T., Nga T. T., Thao T. P., Thuy T. T., Campbell J., Vien M., Hoa N. T., other authors. ( 2013;). Effects of infection control measures on acquisition of five antimicrobial drug-resistant microorganisms in a tetanus intensive care unit in Vietnam. Intensive Care Med 39: 661–671 [CrossRef] [PubMed].
    [Google Scholar]
  33. Sheng W. H., Wang J. T., Li S. Y., Lin Y. C., Cheng A., Chen Y. C., Chang S. C.. ( 2011;). Comparative in vitro antimicrobial susceptibilities and synergistic activities of antimicrobial combinations against carbapenem-resistant Acinetobacter species: Acinetobacter baumannii versus Acinetobacter genospecies 3 and 13TU. Diagn Microbiol Infect Dis 70: 380–386 [CrossRef] [PubMed].
    [Google Scholar]
  34. Song J. Y., Cheong H. J., Choi W. S., Heo J. Y., Noh J. Y., Kim W. J.. ( 2011;). Clinical and microbiological characterization of carbapenem-resistant Acinetobacter baumannii bloodstream infections. J Med Microbiol 60: 605–611 [CrossRef] [PubMed].
    [Google Scholar]
  35. Soon R. L., Nation R. L., Cockram S., Moffatt J. H., Harper M., Adler B., Boyce J. D., Larson I., Li J.. ( 2011;). Different surface charge of colistin-susceptible and -resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment. J Antimicrob Chemother 66: 126–133 [CrossRef] [PubMed].
    [Google Scholar]
  36. Sopirala M. M., Mangino J. E., Gebreyes W. A., Biller B., Bannerman T., Balada-Llasat J. M., Pancholi P.. ( 2010;). Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 54: 4678–4683 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tada T., Miyoshi-Akiyama T., Kato Y., Ohmagari N., Takeshita N., Hung N. V., Phuong D. M., Thu T. A., Binh N. G., other authors. ( 2013;). Emergence of 16S rRNA methylase-producing Acinetobacter baumannii and Pseudomonas aeruginosa isolates in hospitals in Vietnam. BMC Infect Dis 13: 251 [CrossRef] [PubMed].
    [Google Scholar]
  38. Tan T. Y., Lim T. P., Lee W. H., Sasikala S., Hsu L. Y., Kwa A. L.. ( 2011;). In vitro antibiotic synergy in extensively drug-resistant Acinetobacter baumannii: the effect of testing by time-kill, checkerboard, and Etest methods. Antimicrob Agents Chemother 55: 436–438 [CrossRef] [PubMed].
    [Google Scholar]
  39. Taylor W. R., Nguyen K., Nguyen D., Nguyen H., Horby P., Nguyen H. L., Lien T., Tran G., Tran N., other authors. ( 2012;). The spectrum of central nervous system infections in an adult referral hospital in Hanoi, Vietnam. PLoS One 7: e42099 [CrossRef] [PubMed].
    [Google Scholar]
  40. Wareham D. W., Gordon N. C., Hornsey M.. ( 2011;). In vitro activity of teicoplanin combined with colistin versus multidrug-resistant strains of Acinetobacter baumannii. J Antimicrob Chemother 66: 1047–1051 [CrossRef] [PubMed].
    [Google Scholar]
  41. Wiegand I., Hilpert K., Hancock R. E.. ( 2008;). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3: 163–175 [CrossRef] [PubMed].
    [Google Scholar]
  42. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M.. ( 2006;). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27: 351–353 [CrossRef] [PubMed].
    [Google Scholar]
  43. Zhanel G. G., Simor A. E., Vercaigne L., Mandell L., Canadian Carbapenem Discussion Group. ( 1998;). Imipenem and meropenem: comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can J Infect Dis 9: 215–228 [PubMed].
    [Google Scholar]
  44. Zusman O., Avni T., Leibovici L., Adler A., Friberg L., Stergiopoulou T., Carmeli Y., Paul M.. ( 2013;). Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother 57: 5104–5111 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000137
Loading
/content/journal/jmm/10.1099/jmm.0.000137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error