1887

Abstract

is a causative agent of several mycoses in immunocompromised patients but is often misidentified as due to their phenotypic resemblance. In order to evaluate the current identification keys for these species and to develop a rapid and reliable identification method, 11 strains of these yeasts were fully characterized in this study by traditional and advanced technologies. DNA sequences of the internal transcribed spacer (ITS), IGS1, and D1/D2 regions identified six of the yeasts as that were previously known as , including ATCC 204094 that has been used as the quality-control strain of for the VITEK 2 system and other commercial yeast identification kits. These two species could not be differentiated reliably by any previously known phenotypic keys for the species, such as growth patterns on ethylamine, phloroglucinol and tyramine, or by the VITEK 2 system. On the other hand, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) proved to be a rapid and reliable identification tool for the two closely related yeasts. With newly added superspectra from fully authenticated reference strains, the VITEK MS system using MALDI-TOF MS successfully separated strains of and at a similarity level of approximately 67 % for the mass spectra data, and could identify these strains at the species level with 100 % accuracy in repeated tests. Furthermore, the susceptibility results indicated that itraconazole, posaconazole and voriconazole were more effective against both and than the other antifungal agents tested in this study.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000134
2015-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/10/1135.html?itemId=/content/journal/jmm/10.1099/jmm.0.000134&mimeType=html&fmt=ahah

References

  1. Alanio A. , Beretti J. L. , Dauphin B. , Mellado E. , Quesne G. , Lacroix C. , Amara A. , Berche P. , Nassif X. , Bougnoux M. E. . ( 2011;). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin Microbiol Infect 17: 750–755 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  3. Boekhout T. , Guého E. . ( 2003;). Basidiomycetous yeasts. . In Pathogenic Fungi in Humans and Animals, vol. 16, , 2nd edn.., pp. 535–564. Edited by Howard D. H. . New York: Marcel Dekker;.
    [Google Scholar]
  4. Capoor M. R. , Agarwal S. , Yadav S. , Saxena A. K. , Ramesh V. . ( 2013;). Trichosporon mucoides causing onychomycosis in an immunocompetent patient. Int J Dermatol. 54: 704–707 [PubMed].[CrossRef]
    [Google Scholar]
  5. Chagas-Neto T. C. , Chaves G. M. , Melo A. S. , Colombo A. L. . ( 2009;). Bloodstream infections due to Trichosporon spp.: species distribution, Trichosporon asahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Microbiol 47: 1074–1081 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chalupová J. , Raus M. , Sedlárˇová M. , Sebela M. . ( 2014;). Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 32: 230–241 [CrossRef] [PubMed].
    [Google Scholar]
  7. de Almeida Júnior J. N. , Yamamoto de Figueiredo D. S. , Toubas D. , Del Negro G. M. , Motta A. L. , Rossi F. , Guitard J. , Morio F. , Bailly E. , other authors . ( 2014;). Usefulness of matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry for identifying clinical Trichosporon isolates. Clin Microbiol Infect 20: 784–790 [CrossRef] [PubMed].
    [Google Scholar]
  8. De Carolis E. , Posteraro B. , Lass-Flörl C. , Vella A. , Florio A. R. , Torelli R. , Girmenia C. , Colozza C. , Tortorano A. M. , other authors . ( 2012;). Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 18: 475–484 [CrossRef] [PubMed].
    [Google Scholar]
  9. de Hoog G. S. , Guého E. . ( 2005;). White piedra, black piedra, and tinea nigra. . In Topley & Wilson's Microbiology and Microbial Infections, Medical Mycology , 10th edn.., pp. 195–201. Edited by Merz W. G. , Hay R. J. . London: Hodder Arnold;.
    [Google Scholar]
  10. De Respinis S. , Monnin V. , Girard V. , Welker M. , Arsac M. , Cellière B. , Durand G. , Bosshard P. P. , Farina C. , other authors . ( 2014;). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry using the Vitek MS system for rapid and accurate identification of dermatophytes on solid cultures. J Clin Microbiol 52: 4286–4292 [CrossRef] [PubMed].
    [Google Scholar]
  11. Espinel-Ingroff A. . ( 1998;). Comparison of In vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol 36: 2950–2956 [PubMed].
    [Google Scholar]
  12. Fan Y. M. , Huang W. M. , Yang Y. P. , Li W. , Li S. F. . ( 2011;). Primary cutaneous trichosporonosis caused by Trichosporon dermatis in an immunocompetent man. J Am Acad Dermatol 65: 434–436 [CrossRef] [PubMed].
    [Google Scholar]
  13. Guého E. , Smith M. T. , de Hoog G. S. , Billon-Grand G. , Christen R. , Batenburg-van der Vegte W. H. . ( 1992;). Contributions to a revision of the genus Trichosporon . Antonie van Leeuwenhoek 61: 289–316 [CrossRef] [PubMed].
    [Google Scholar]
  14. Guého E. , Improvisi L. , de Hoog G. S. , Dupont B. . ( 1994;). Trichosporon on humans: a practical account. Mycoses 37: 3–10 [CrossRef] [PubMed].
    [Google Scholar]
  15. Gujjari P. , Suh S. O. , Coumes K. , Zhou J. J. . ( 2011;). Characterization of oleaginous yeasts revealed two novel species: Trichosporon cacaoliposimilis sp. nov. and Trichosporon oleaginosus sp. nov. Mycologia 103: 1110–1118 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gunn S. R. , Reveles X. T. , Hamlington J. D. , Sadkowski L. C. , Johnson-Pais T. L. , Jorgensen J. H. . ( 2006;). Use of DNA sequencing analysis to confirm fungemia due to Trichosporon dermatis in a pediatric patient. J Clin Microbiol 44: 1175–1177 [CrossRef] [PubMed].
    [Google Scholar]
  17. Guo L. N. , Xiao M. , Kong F. , Chen S. C. , Wang H. , Sorrell T. C. , Jiang W. , Dou H. T. , Li R. Y. , Xu Y. C. . ( 2011;). Three-locus identification, genotyping, and antifungal susceptibilities of medically important Trichosporon species from China. J Clin Microbiol 49: 3805–3811 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hagen F. , Khayhan K. , Theelen B. , Kolecka A. , Polacheck I. , Sionov E. , Falk R. , Parnmen S. , Lumbsch H. T. , Boekhout T. . ( 2015;). Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78: 16–48 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hashino S. , Takahashi S. , Morita R. , Kanamori H. , Onozawa M. , Kawamura T. , Kahata K. , Kondo T. , Tokimatsu I. , other authors . ( 2013;). Fungemia due to Trichosporon dermatis in a patient with refractory Burkitt's leukemia. Blood Res 48: 154–156 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hata D. J. , Hall L. , Fothergill A. W. , Larone D. H. , Wengenack N. L. . ( 2007;). Multicenter evaluation of the new VITEK 2 advanced colorimetric yeast identification card. J Clin Microbiol 45: 1087–1092 [CrossRef] [PubMed].
    [Google Scholar]
  21. Jurado M. , Vázquez C. , Marín S. , Sanchis V. , Teresa González-Jaén M. . ( 2006;). PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Syst Appl Microbiol 29: 681–689 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kolecka A. , Khayhan K. , Groenewald M. , Theelen B. , Arabatzis M. , Velegraki A. , Kostrzewa M. , Mares M. , Taj-Aldeen S. J. , Boekhout T. . ( 2013;). Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51: 2491–2500 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kurtzman C. P. , Fell J. W. , Boekhout T. , Robert V. . ( 2011;). Methods for isolation, phenotypic characterization and maintenance of yeasts. . In The Yeasts, a Taxonomic Study , 5th edn.., pp. 87–110. Edited by Kurtzman C. P. , Fell J. W. , Boekhout T. . London: Elsevier; [CrossRef].
    [Google Scholar]
  24. Lacasse A. , Cleveland K. O. . ( 2009;). Trichosporon mucoides fungemia in a liver transplant recipient: case report and review. Transpl Infect Dis 11: 155–159 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lacroix C. , Gicquel A. , Sendid B. , Meyer J. , Accoceberry I. , François N. , Morio F. , Desoubeaux G. , Chandenier J. , other authors . ( 2014;). Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin Microbiol Infect 20: 153–158 [CrossRef] [PubMed].
    [Google Scholar]
  26. Mayser P. , Huppertz M. , Papavassilis C. , Gründer K. . ( 1996;). [Fungi of the Trichosporon genus. Identification, epidemiology and significance of dermatologic disease pictures]. Hautarzt 47: 913–920 (in German) [CrossRef] [PubMed].
    [Google Scholar]
  27. McTaggart L. R. , Lei E. , Richardson S. E. , Hoang L. , Fothergill A. , Zhang S. X. . ( 2011;). Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49: 3050–3053 [CrossRef] [PubMed].
    [Google Scholar]
  28. Middelhoven W. J. , Scorzetti G. , Fell J. W. . ( 2004;). Systematics of the anamorphic basidiomycetous yeast genus Trichosporon Behrend with the description of five novel species: Trichosporon vadense, T. smithiae, T. dehoogii, T. scarabaeorum and T. gamsii . Int J Syst Evol Microbiol 54: 975–986 [CrossRef] [PubMed].
    [Google Scholar]
  29. Nenoff P. , Erhard M. , Simon J. C. , Muylowa G. K. , Herrmann J. , Rataj W. , Gräser Y. . ( 2013;). MALDI-TOF mass spectrometry – a rapid method for the identification of dermatophyte species. Med Mycol 51: 17–24 [CrossRef] [PubMed].
    [Google Scholar]
  30. Rodriguez-Tudela J. L. , Diaz-Guerra T. M. , Mellado E. , Cano V. , Tapia C. , Perkins A. , Gomez-Lopez A. , Rodero L. , Cuenca-Estrella M. . ( 2005;). Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother 49: 4026–4034 [CrossRef] [PubMed].
    [Google Scholar]
  31. Ruan S.-Y. , Chien J.-Y. , Hsueh P. R. . ( 2009;). Invasive trichosporonosis caused by Trichosporon asahii and other unusual Trichosporon species at a medical center in Taiwan. Clin Infect Dis 49: e11–e17 [CrossRef] [PubMed].
    [Google Scholar]
  32. Scorzetti G. , Fell J. W. , Fonseca A. , Statzell-Tallman A. . ( 2002;). Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2: 495–517 [CrossRef] [PubMed].
    [Google Scholar]
  33. Sendid B. , Ducoroy P. , François N. , Lucchi G. , Spinali S. , Vagner O. , Damiens S. , Bonnin A. , Poulain D. , Dalle F. . ( 2013;). Evaluation of MALDI-TOF mass spectrometry for the identification of medically-important yeasts in the clinical laboratories of Dijon and Lille hospitals. Med Mycol 51: 25–32 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sugita T. . ( 2011;). Trichosporon Behrend. (1890). . In The Yeasts, a Taxonomic Study , 5th edn.., pp. 2015–2061. Edited by Kurtzman C. P. , Fell J. W. , Boekhout T. . London: Elsevier; [CrossRef].
    [Google Scholar]
  35. Sugita T. , Takashima M. , Nakase T. , Ichikawa T. , Ikeda R. , Shinoda T. . ( 2001a;). Two new yeasts, Trichosporon debeurmannianum sp. nov. and Trichosporon dermatis sp. nov., transferred from the Cryptococcus humicola complex. Int J Syst Evol Microbiol 51: 1221–1228 [CrossRef] [PubMed].
    [Google Scholar]
  36. Sugita T. , Ichikawa T. , Matsukura M. , Sueda M. , Takashima M. , Ikeda R. , Nishikawa A. , Shinoda T. . ( 2001b;). Genetic diversity and biochemical characteristics of Trichosporon asahii isolated from clinical specimens, houses of patients with summer-type-hypersensitivity pneumonitis, and environmental materials. J Clin Microbiol 39: 2405–2411 [CrossRef] [PubMed].
    [Google Scholar]
  37. Sugita T. , Nakajima M. , Ikeda R. , Matsushima T. , Shinoda T. . ( 2002;). Sequence analysis of the ribosomal DNA intergenic spacer 1 regions of Trichosporon species. J Clin Microbiol 40: 1826–1830 [CrossRef] [PubMed].
    [Google Scholar]
  38. Suh S.-O. , Zhou J. J. . ( 2010;). Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov. FEMS Yeast Res 10: 631–638 [PubMed].
    [Google Scholar]
  39. Swofford D. L. . ( 2002;). paup. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0b10. Sunderland, Massachusetts: Sinauer Associates.
  40. Tatusova T. A. , Madden T. L. . ( 1999;). blast 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174: 247–250 [CrossRef] [PubMed].
    [Google Scholar]
  41. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  42. Yamamoto de Figueiredo D. S. , de Almeida J. N. Jr , Motta A. L. , Castro e Silva D. M. , Szeszs M. W. , Del Negro G. M. . ( 2014;). Evaluation of VITEK 2 for discriminating Trichosporon species: misidentification of Trichosporon non-T. asahii . Diagn Microbiol Infect Dis 80: 59–61 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000134
Loading
/content/journal/jmm/10.1099/jmm.0.000134
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error