1887

Abstract

Fluconazole is the standard treatment for oropharyngeal candidiasis, which is the third most common opportunistic infection in human immunodeficiency virus (HIV)/AIDS patients in Indonesia. Overuse of this drug could lead to the emergence of resistance. The objective of this study was to analyse the role of , , and gene overexpression and mutations in the gene as a genetic mechanism of fluconazole resistance in isolated from HIV patients in Indonesia. Overexpression of , , and was analysed by real-time reverse transcription PCR, while gene mutation analysis was performed using sequencing methods. Seventeen isolates out of 92 strains of isolated from 108 HIV patients were found to be resistant to azole antifungals. The highest gene overexpression of was found in resistant to single fluconazole, while the highest gene overexpression of was detected in all isolates of resistant to multiple azoles. Amino acid substitutions were observed at six positions, i.e. D116E, D153E, I261V, E266D, V437I and V488I. The amino acid substitution I261V was identified in this study and was probably associated with fluconazole resistance. The combination of overexpression of and and mutation in the gene was found to be a genetic mechanism of fluconazole resistance in isolated from HIV patients in Indonesia.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000123
2015-09-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/9/1046.html?itemId=/content/journal/jmm/10.1099/jmm.0.000123&mimeType=html&fmt=ahah

References

  1. Agha M. A. , Agha S. A. , Sharafat S. . ( 2012;). API 20C: a reliable and rapid diagnostic tool for fungal infections. Gomal J Med Sci 10: 237–240.
    [Google Scholar]
  2. Andes D. , Forrest A. , Lepak A. , Nett J. , Marchillo K. , Lincoln L. . ( 2006;). Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans . Antimicrob Agents Chemother 50: 2374–2383 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bandar I. N. , Widodo D. , Djauzi S. , Muthalib A. , Soegondo S. , Wahyuningsih R. . ( 2006;). Correlation between CD4 count and intensity of Candida colonization in the oropharynx of HIV-infected/AIDS patient. Acta Med Indones 38: 119–125 [PubMed].
    [Google Scholar]
  4. Chau A. S. , Mendrick C. A. , Sabatelli F. J. , Loebenberg D. , McNicholas P. M. . ( 2004;). Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 48: 2124–2131 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chen L. M. , Xu Y. H. , Zhou C. L. , Zhao J. , Li C. Y. , Wang R. . ( 2010;). Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations. J Int Med Res 38: 536–545 [CrossRef] [PubMed].
    [Google Scholar]
  6. CLSI ( 2008;). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts , 3rd edn. Approved Standard M27-A3 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  7. de Repentigny L. , Lewandowski D. , Jolicoeur P. . ( 2004;). Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 17: 729–759 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dheda K. , Huggett J. F. , Bustin S. A. , Johnson M. A. , Rook G. , Zumla A. . ( 2004;). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37: 112–114, 116, 118–119 [PubMed].
    [Google Scholar]
  9. Goldman G. H. , da Silva Ferreira M. E. , dos Reis Marques E. , Savoldi M. , Perlin D. , Park S. , Godoy Martinez P. C. , Goldman M. H. , Colombo A. L. . ( 2004;). Evaluation of fluconazole resistance mechanisms in Candida albicans clinical isolates from HIV-infected patients in Brazil. Diagn Microbiol Infect Dis 50: 25–32 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hoot S. J. , Oliver B. G. , White T. C. . ( 2008;). Candida albicans UPC2 is transcriptionally induced in response to antifungal drugs and anaerobicity through Upc2p-dependent and -independent mechanisms. Microbiology 154: 2748–2756 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lee M. K. , Williams L. E. , Warnock D. W. , Arthington-Skaggs B. A. . ( 2004;). Drug resistance genes and trailing growth in Candida albicans isolates. J Antimicrob Chemother 53: 217–224 [CrossRef] [PubMed].
    [Google Scholar]
  12. Marichal P. , Koymans L. , Willemsens S. , Bellens D. , Verhasselt P. , Luyten W. , Borgers M. , Ramaekers F. C. , Odds F. C. , Bossche H. V. . ( 1999;). Contribution of mutations in the cytochrome P450 14 α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans . Microbiology 145: 2701–2713 [PubMed].[CrossRef]
    [Google Scholar]
  13. Martínez M. , López-Ribot J. L. , Kirkpatrick W. R. , Bachmann S. P. , Perea S. , Ruesga M. T. , Patterson T. F. . ( 2002;). Heterogeneous mechanisms of azole resistance in Candida albicans clinical isolates from an HIV-infected patient on continuous fluconazole therapy for oropharyngeal candidosis. J Antimicrob Chemother 49: 515–524 [CrossRef] [PubMed].
    [Google Scholar]
  14. Morio F. , Loge C. , Besse B. , Hennequin C. , Le Pape P. . ( 2010;). Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn Microbiol Infect Dis 66: 373–384 [CrossRef] [PubMed].
    [Google Scholar]
  15. Oliver B. G. , Song J. L. , Choiniere J. H. , White T. C. . ( 2007;). cis-Acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p. Eukaryot Cell 6: 2231–2239 [CrossRef] [PubMed].
    [Google Scholar]
  16. Orrù G. , Piras V. , Ciusa M. L. , Taccori F. , Pisano M. B. , Montaldo C. , Cosentino S. , Fadda M. E. . ( 2008;). Azole resistance and ERG11 464 polymorphism in oral Candida albicans clinical strains isolated in Sardinia. Open Mycology J 2: 82–85 [CrossRef].
    [Google Scholar]
  17. Pappas P. G. , Kauffman C. A. , Andes D. , Benjamin D. K. Jr , Calandra T. F. , Edwards J. E. Jr , Filler S. G. , Fisher J. F. , Kullberg B. J. , other authors . ( 2009;). Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48: 503–535 [CrossRef] [PubMed].
    [Google Scholar]
  18. Perea S. , López-Ribot J. L. , Kirkpatrick W. R. , McAtee R. K. , Santillán R. A. , Martínez M. , Calabrese D. , Sanglard D. , Patterson T. F. . ( 2001;). Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45: 2676–2684 [CrossRef] [PubMed].
    [Google Scholar]
  19. Pohan H. T. . ( 2006;). Opportunistic infection of HIV-infected/AIDS patients in Indonesia: problems and challenge. Acta Med Indones 38: 169–173 [PubMed].
    [Google Scholar]
  20. Sanglard D. , Odds F. C. . ( 2002;). Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2: 73–85 [CrossRef] [PubMed].
    [Google Scholar]
  21. Song J. L. , Harry J. B. , Eastman R. T. , Oliver B. G. , White T. C. . ( 2004;). The Candida albicans lanosterol 14-α-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother 48: 1136–1144 [CrossRef] [PubMed].
    [Google Scholar]
  22. Torres-Rodríguez J. M. , Alvarado-Ramírez E. . ( 2007;). In vitro susceptibilities to yeasts using the ATB FUNGUS 2 method, compared with Sensititre Yeast One and standard CLSI (NCCLS) M27-A2 methods. J Antimicrob Chemother 60: 658–661 [CrossRef] [PubMed].
    [Google Scholar]
  23. Wang H. , Kong F. , Sorrell T. C. , Wang B. , McNicholas P. , Pantarat N. , Ellis D. , Xiao M. , Widmer F. , Chen S. C. . ( 2009;). Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiol 9: 167–172 [CrossRef] [PubMed].
    [Google Scholar]
  24. White T. C. , Holleman S. , Dy F. , Mirels L. F. , Stevens D. A. . ( 2002;). Resistance mechanisms in clinical isolates of Candida albicans . Antimicrob Agents Chemother 46: 1704–1713 [CrossRef] [PubMed].
    [Google Scholar]
  25. Wingeter M. A. , Guilhermetti E. , Shinobu C. S. , Takaki I. , Svidzinski T. I. . ( 2007;). [Microbiological identification and in vitro sensitivity of Candida isolates from the oral cavity of HIV-positive individuals]. Rev Soc Bras Med Trop 40: 272–276 (in Portuguese) [CrossRef] [PubMed].
    [Google Scholar]
  26. Xu Y. , Chen L. , Li C. . ( 2008;). Susceptibility of clinical isolates of Candida species to fluconazole and detection of Candida albicans ERG11 mutations. J Antimicrob Chemother 61: 798–804 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000123
Loading
/content/journal/jmm/10.1099/jmm.0.000123
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error