1887

Abstract

The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus , which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml. Limonene was found to possess about 75–95 % antibiofilm activity against all the pathogens tested, viz. (SF370 and 5 clinical isolates), (UA159) and (ATCC 6249) at 400 μg ml concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated to healthy human blood goes in unison with gene expression studies in which the gene was found to be downregulated. Anti-cariogenic efficacy of limonene against was confirmed, with inhibition of acid production and downregulation of the gene. Downregulation of the and genes, which play a critical role in regulating surface-associated proteins in and , respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000105
2015-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/8/879.html?itemId=/content/journal/jmm/10.1099/jmm.0.000105&mimeType=html&fmt=ahah

References

  1. Adukwu E.C. , Allen S.C. , Phillips C.A. . ( 2012;). The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus . J Appl Microbiol 113: 1217–1227 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baldassarri L. , Creti R. , Recchia S. , Imperi M. , Facinelli B. , Giovanetti E. , Pataracchia M. , Alfarone G. , Orefici G. . ( 2006;). Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol 44: 2721–2727 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ban S.H. , Kim J.E. , Pandit S. , Jeon J.G. . ( 2012;). Influences of Dryopteris crassirhizoma extract on the viability, growth and virulence properties of Streptococcus mutans . Molecules 17: 9231–9244 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bandara H.M.H.N. , Lam O.L.T. , Watt R.M. , Jin L.J. , Samaranayake L.P. . ( 2010;). Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol 59: 1225–1234 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bisno A.L. . ( 1991;). Group A streptococcal infections and acute rheumatic fever. N Engl J Med 325: 783–793 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bjarnsholt T. . ( 2013;). The role of bacterial biofilms in chronic infections. APMIS Suppl 121: (Suppl. 136), 1–51 [CrossRef] [PubMed].
    [Google Scholar]
  7. Brown T.A. Jr , Ahn S.J. , Frank R.N. , Chen Y.Y.M. , Lemos J.A. , Burne R.A. . ( 2005;). A hypothetical protein of Streptococcus mutans is critical for biofilm formation. Infect Immun 73: 3147–3151 [CrossRef] [PubMed].
    [Google Scholar]
  8. Budzyńska A. , Wieckowska-Szakiel M. , Sadowska B. , Kalemba D. , Rózalska B. . ( 2011;). Antibiofilm activity of selected plant essential oils and their major components. Pol J Microbiol 60: 35–41 [PubMed].[CrossRef]
    [Google Scholar]
  9. Chaturvedi T. . ( 2013;). Allergy related to dental implant and its clinical significance. Clin Cosmet Investig Dent 5: 57–61 [CrossRef] [PubMed].
    [Google Scholar]
  10. Chee H.Y. , Kim H. , Lee M.H. . ( 2009;). In vitro antifungal activity of limonene against Trichophyton rubrum . Mycobiology 37: 243–246 [CrossRef] [PubMed].
    [Google Scholar]
  11. Chen Y. , Zeng H. , Tian J. , Ban X. , Ma B. , Wang Y. . ( 2013;). Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans . J Med Microbiol 62: 1175–1183 [CrossRef] [PubMed].
    [Google Scholar]
  12. Chen Z. , He D. , Deng J. , Zhu J. , Mao Q. . ( 2015;). Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) rich fresh leaves. Nat Prod Res 29: (in press) [CrossRef] [PubMed].
    [Google Scholar]
  13. Cho K.H. , Caparon M.G. . ( 2005;). Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes . Mol Microbiol 57: 1545–1556 [CrossRef] [PubMed].
    [Google Scholar]
  14. Collin M. , Olsén A. . ( 2003;). Extracellular enzymes with immunomodulating activities: variations on a theme in Streptococcus pyogenes . Infect Immun 71: 2983–2992 [CrossRef] [PubMed].
    [Google Scholar]
  15. Conley J. , Olson M.E. , Cook L.S. , Ceri H. , Phan V. , Davies H.D. . (1996);. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol 20: 1083–1091 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hendry E.R. , Worthington T. , Conway B.R. , Lambert P.A. . ( 2009;). Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother 64: 1219–1225 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hsieh P.C. , Siegel S.A. , Rogers B. , Davis D. , Lewis K. . ( 1998;). Bacteria lacking a multidrug pump: a sensitive tool for drug discovery. Proc Natl Acad Sci U S A 95: 6602–6606 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hsu C.Y. , Lin M.H. , Chen C.C. , Chien S.C. , Cheng Y.H. , Su I.N. , Shu J.C. . ( 2011;). Vancomycin promotes the bacterial autolysis, release of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus . FEMS Immunol Med Microbiol 63: 236–247 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hübner N.O. , Matthes R. , Koban I. , Rändler C. , Müller G. , Bender C. , Kindel E. , Kocher T. , Kramer A. . ( 2010;). Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 23: (Suppl), 28–34 [CrossRef] [PubMed].
    [Google Scholar]
  20. Iwasa K. , Lee D.U. , Kang S.I. , Wiegrebe W. . ( 1998;). Antimicrobial activity of 8-alkyl- and 8-phenyl-substituted berberines and their 12-bromo derivatives. J Nat Prod 61: 1150–1153 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kim M.B. , Shaw J.T. . ( 2010;). Synthesis of antimicrobial natural products targeting FtsZ: (+)-totarol and related totarane diterpenes. Org Lett 12: 3324–3327 [CrossRef] [PubMed].
    [Google Scholar]
  22. Koziel J. , Maciag-Gudowska A. , Mikolajczyk T. , Bzowska M. , Sturdevant D.E. , Whitney A.R. , Shaw L.N. , DeLeo F.R. , Potempa J. . ( 2009;). Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One 4: e5210 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kubo I. , Muroi H. , Himejima M. . ( 1992;). Antibacterial activity of totarol and its potentiation. J Nat Prod 55: 1436–1440 [CrossRef] [PubMed].
    [Google Scholar]
  24. Lewis K. . ( 2001;). In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 3: 247–254 [PubMed].
    [Google Scholar]
  25. Lou Q. , Zhu T. , Hu J. , Ben H. , Yang J. , Yu F. , Liu J. , Wu Y. , Fischer A. , other authors . ( 2011;). Role of the SaeRS two-component regulatory system in Staphylococcus epidermidis autolysis and biofilm formation. BMC Microbiol 11: 146 [CrossRef] [PubMed].
    [Google Scholar]
  26. Marquez B. . ( 2005;). Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87: 1137–1147 [CrossRef] [PubMed].
    [Google Scholar]
  27. Muroi H. , Kubo I. . ( 1996;). Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin-resistant Staphylococcus aureus . J Appl Bacteriol 80: 387–394 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nguyen H.M. , Graber C.J. . ( 2010;). Limitations of antibiotic options for invasive infections caused by methicillin-resistant Staphylococcus aureus: is combination therapy the answer?. J Antimicrob Chemother 65: 24–36 [CrossRef] [PubMed].
    [Google Scholar]
  29. Odds F.C. . ( 2003;). Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52: 1 [CrossRef] [PubMed].
    [Google Scholar]
  30. Oo T.Z. , Cole N. , Garthwaite L. , Willcox M.D. , Zhu H. . ( 2010;). Evaluation of synergistic activity of bovine lactoferricin with antibiotics in corneal infection. J Antimicrob Chemother 65: 1243–1251 [CrossRef] [PubMed].
    [Google Scholar]
  31. Pagès J.M. , Masi M. , Barbe J. . ( 2005;). Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11: 382–389 [CrossRef] [PubMed].
    [Google Scholar]
  32. Panizzi P. , Nahrendorf M. , Figueiredo J.L. , Panizzi J. , Marinelli B. , Iwamoto Y. , Keliher E. , Maddur A.A. , Waterman P. , other authors . ( 2011;). In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 17: 1142–1146 [CrossRef] [PubMed].
    [Google Scholar]
  33. Park K.D. , Lee J.H. , Kim S.H. , Kang T.H. , Moon J.S. , Kim S.U. . ( 2006;). Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorg Med Chem Lett 16: 3913–3916 [CrossRef] [PubMed].
    [Google Scholar]
  34. Qiu J. , Feng H. , Lu J. , Xiang H. , Wang D. , Dong J. , Wang J. , Wang X. , Liu J. , Deng X. . ( 2010;). Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus . Appl Environ Microbiol 76: 5846–5851 [CrossRef] [PubMed].
    [Google Scholar]
  35. Rice K.C. , Mann E.E. , Endres J.L. , Weiss E.C. , Cassat J.E. , Smeltzer M.S. , Bayles K.W. . ( 2007;). The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus . Proc Natl Acad Sci U S A 104: 8113–8118 [CrossRef] [PubMed].
    [Google Scholar]
  36. Sarkar A.K. , Appidi S. , Ranganath A.S. . ( 2011;). Evaluation of berberine chloride as a new antibacterial agent against Gram-positive bacteria for medical textiles. Fibres & Textiles in Eastern Europe 19: 131–134.
    [Google Scholar]
  37. Smith E.C. , Kaatz G.W. , Seo S.M. , Wareham N. , Williamson E.M. , Gibbons S. . ( 2007;). The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus . Antimicrob Agents Chemother 51: 4480–4483 [CrossRef] [PubMed].
    [Google Scholar]
  38. Steinberger R.E. , Holden P.A. . ( 2005;). Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71: 5404–5410 [CrossRef] [PubMed].
    [Google Scholar]
  39. Stermitz F.R. , Lorenz P. , Tawara J.N. , Zenewicz L.A. , Lewis K. . ( 2000;). Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A 97: 1433–1437 [CrossRef] [PubMed].
    [Google Scholar]
  40. Stewart P.S. , Franklin M.J. . ( 2008;). Physiological heterogeneity in biofilms. Nat Rev Microbiol 6: 199–210 [CrossRef] [PubMed].
    [Google Scholar]
  41. Wang I.N. , Deaton J. , Young R. . ( 2003;). Sizing the holin lesion with an endolysin-β-galactosidase fusion. J Bacteriol 185: 779–787 [CrossRef] [PubMed].
    [Google Scholar]
  42. Wang D. , Yu L. , Xiang H. , Fan J. , He L. , Guo N. , Feng H. , Deng X. . ( 2008;). Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride. FEMS Microbiol Lett 279: 217–225 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wang X. , Yao X. , Zhu Z. , Tang T. , Dai K. , Sadovskaya I. , Flahaut S. , Jabbouri S. . ( 2009;). Effect of berberine on Staphylococcus epidermidis biofilm formation. Int J Antimicrob Agents 34: 60–66 [CrossRef] [PubMed].
    [Google Scholar]
  44. Whitchurch C.B. , Tolker-Nielsen T. , Ragas P.C. , Mattick J.S. . ( 2002;). Extracellular DNA required for bacterial biofilm formation. Science 295: 1487 [CrossRef] [PubMed].
    [Google Scholar]
  45. Xing M. , Shen F. , Liu L. , Chen Z. , Guo N. , Wang X. , Wang W. , Zhang K. , Wu X. , other authors . ( 2012;). Antimicrobial efficacy of the alkaloid harmaline alone and in combination with chlorhexidine digluconate against clinical isolates of Staphylococcus aureus grown in planktonic and biofilm cultures. Lett Appl Microbiol 54: 475–482 [CrossRef] [PubMed].
    [Google Scholar]
  46. Yu Y. , Yi Z.B. , Liang Y.Z. . ( 2007;). Validate antibacterial mode and find main bioactive components of traditional Chinese medicine Aquilegia oxysepala . Bioorg Med Chem Lett 17: 1855–1859 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000105
Loading
/content/journal/jmm/10.1099/jmm.0.000105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error