1887

Abstract

This study aimed to characterize the relationship between pathogenicity islands (PAIs), single virulence genes and resistance among uropathogenic , evaluating the resistance plasmid carriage fitness cost related to PAIs. For 65 urinary , antimicrobial susceptibility and extended-spectrum β-lactamase production were determined with the Vitek 2 Advanced Expert system. Phylogroup determination, detection of PAIs and virulence genes , , , , , , , , , and , plasmid replicon typing and screening for plasmidic resistance determinants , , and were carried out by PCR. Conjugation was performed between a donor carrying IncF, IncK and , and receptors carrying one to six PAIs. The relative fitness of transconjugants was estimated by pairwise competition experiments. PAI IV (68 %), gene (57 %) and resistance to ampicillin were the most prevalent traits. PAI I, PAI II, PAI III and PAI II were exclusively associated with susceptibility to amoxicillin/clavulanic acid, cefotaxime, ceftazidime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole, and were more prevalent in strains susceptible to ampicillin and cefalotin. PAI IV, PAI II and PAI I were more prevalent among isolates showing resistance to amoxicillin/clavulanic acid, cefalotin, cefotaxime, ceftazidime and gentamicin. An inverse relationship was observed between the number of plasmids and the number of PAIs carried. Transconjugants were obtained for receptors carrying three or fewer PAIs. The mean relative fitness rates of these transconjugants were 0.87 (two PAIs), 1.00 (one PAI) and 1.09 (three PAI). The interplay between resistance, PAI carriage and fitness cost of plasmid acquisition could be considered PAI specific, and not necessarily associated with the number of PAIs.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000104
2015-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/8/828.html?itemId=/content/journal/jmm/10.1099/jmm.0.000104&mimeType=html&fmt=ahah

References

  1. Bennett P.M.. ( 2008;). Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153: (Suppl. 1), S347–S357 [CrossRef] [PubMed].
    [Google Scholar]
  2. Björkman J., Andersson D.I.. ( 2000;). The cost of antibiotic resistance from a bacterial perspective. Drug Resist Updat 3: 237–245 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bronowski C., Smith S.L., Yokota K., Corkill J.E., Martin H.M., Campbell B.J., Rhodes J.M., Hart C.A., Winstanley C.. ( 2008;). A subset of mucosa-associated Escherichia coli isolates from patients with colon cancer, but not Crohn's disease, share pathogenicity islands with urinary pathogenic E. coli. Microbiology 154: 571–583 [CrossRef] [PubMed].
    [Google Scholar]
  4. Calhau V., Ribeiro G., Mendonça N., Da Silva G.J.. ( 2013;). Prevalent combination of virulence and plasmidic-encoded resistance in ST 131 Escherichia coli strains. Virulence 4: 726–729 [CrossRef] [PubMed].
    [Google Scholar]
  5. Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K.L., Threlfall E.J.. ( 2005;). Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63: 219–228 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cattoir V., Poirel L., Rotimi V., Soussy C.J., Nordmann P.. ( 2007;). Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 60: 394–397 [CrossRef] [PubMed].
    [Google Scholar]
  7. Clermont O., Bonacorsi S., Bingen E.. ( 2000;). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66: 4555–4558 [CrossRef] [PubMed].
    [Google Scholar]
  8. CLSI ( 2010;). Performance Standards for Antimicrobial Susceptibility Testing 20th Informational Supplement M100-S20 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  9. Coque T.M., Novais A., Carattoli A., Poirel L., Pitout J., Peixe L., Baquero F., Cantón R., Nordmann P.. ( 2008;). Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis 14: 195–200 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dionisio F., Conceição I.C., Marques A.C., Fernandes L., Gordo I.. ( 2005;). The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett 1: 250–252 [CrossRef] [PubMed].
    [Google Scholar]
  11. EARSS ( 2007;). EARSS Annual Report 2007 Bilthoven: European Antimicrobial Resistance Surveillance System;.
    [Google Scholar]
  12. Enne V.I., Delsol A.A., Davis G.R., Hayward S.L., Roe J.M., Bennett P.M.. ( 2005;). Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element. J Antimicrob Chemother 56: 544–551 [CrossRef] [PubMed].
    [Google Scholar]
  13. Escobar-Páramo P., Clermont O., Blanc-Potard A.B., Bui H., Le Bouguénec C., Denamur E.. ( 2004;). A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol 21: 1085–1094 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gal-Mor O., Finlay B.B.. ( 2006;). Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8: 1707–1719 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hacker J., Blum-Oehler G., Mühldorfer I., Tschäpe H.. ( 1997;). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23: 1089–1097 [CrossRef] [PubMed].
    [Google Scholar]
  16. Houdouin V., Bonacorsi S., Bidet P., Bingen-Bidois M., Barraud D., Bingen E.. ( 2006;). Phylogenetic background and carriage of pathogenicity island-like domains in relation to antibiotic resistance profiles among Escherichia coli urosepsis isolates. J Antimicrob Chemother 58: 748–751 [CrossRef] [PubMed].
    [Google Scholar]
  17. Johnson T.J., Nolan L.K.. ( 2009;). Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73: 750–774 [CrossRef] [PubMed].
    [Google Scholar]
  18. Johnson J.R., Stell A.L.. ( 2000;). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181: 261–272 [CrossRef] [PubMed].
    [Google Scholar]
  19. Johnson J.R., Moseley S.L., Roberts P.L., Stamm W.E.. ( 1988;). Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun 56: 405–412 [PubMed].
    [Google Scholar]
  20. Johnson J.R., Kuskowski M.A., Owens K., Gajewski A., Winokur P.L.. ( 2003;). Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. J Infect Dis 188: 759–768 [CrossRef] [PubMed].
    [Google Scholar]
  21. Johnson J.R., Kuskowski M.A., O'Bryan T.T., Colodner R., Raz R.. ( 2005;). Virulence genotype and phylogenetic origin in relation to antibiotic resistance profile among Escherichia coli urine sample isolates from Israeli women with acute uncomplicated cystitis. Antimicrob Agents Chemother 49: 26–31 [CrossRef] [PubMed].
    [Google Scholar]
  22. Karisik E., Ellington M.J., Livermore D.M., Woodford N.. ( 2008;). Virulence factors in Escherichia coli with CTX-M-15 and other extended-spectrum β-lactamases in the UK. J Antimicrob Chemother 61: 54–58 [CrossRef] [PubMed].
    [Google Scholar]
  23. Ma J., Zeng Z., Chen Z., Xu X., Wang X., Deng Y., D., Huang L., Zhang Y., other authors. ( 2009;). High prevalence of plasmid-mediated quinolone resistance determinants qnr aac(6′)-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother 53: 519–524 [CrossRef] [PubMed].
    [Google Scholar]
  24. Mendonça N., Leitão J., Manageiro V., Ferreira E., Caniça M.. ( 2007;). Spread of extended-spectrum β-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrob Agents Chemother 51: 1946–1955 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mendonça N., Calhau V., Lin T., Boaventura L., Ribeiro G., Da Silva G.J.. ( 2011;). Unusual genotype of a uropathogenic Escherichia coli strain assigned to the B2 phylogenetic group. J Clin Microbiol 49: 3105–3106 [CrossRef] [PubMed].
    [Google Scholar]
  26. Middendorf B., Hochhut B., Leipold K., Dobrindt U., Blum-Oehler G., Hacker J.. ( 2004;). Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 186: 3086–3096 [CrossRef] [PubMed].
    [Google Scholar]
  27. Moreno E., Prats G., Sabaté M., Pérez T., Johnson J.R., Andreu A.. ( 2006;). Quinolone, fluoroquinolone and trimethoprim/sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother 57: 204–211 [CrossRef] [PubMed].
    [Google Scholar]
  28. Park C.H., Robicsek A., Jacoby G.A., Sahm D., Hooper D.C.. ( 2006;). Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 50: 3953–3955 [CrossRef] [PubMed].
    [Google Scholar]
  29. Piatti G., Mannini A., Balistreri M., Schito A.M.. ( 2008;). Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J Clin Microbiol 46: 480–487 [CrossRef] [PubMed].
    [Google Scholar]
  30. Picard B., Garcia J.S., Gouriou S., Duriez P., Brahimi N., Bingen E., Elion J., Denamur E.. ( 1999;). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67: 546–553 [PubMed].
    [Google Scholar]
  31. Ram S., Vajpayee P., Shanker R.. ( 2008;). Contamination of potable water distribution systems by multiantimicrobial-resistant enterohemorrhagic Escherichia coli. Environ Health Perspect 116: 448–452 [PubMed].
    [Google Scholar]
  32. Rasko D.A., Rosovitz M.J., Myers G.S., Mongodin E.F., Fricke W.F., Gajer P., Crabtree J., Sebaihia M., Thomson N.R., other authors. ( 2008;). The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190: 6881–6893 [CrossRef] [PubMed].
    [Google Scholar]
  33. Ray J.L., Harms K., Wikmark O.G., Starikova I., Johnsen P.J., Nielsen K.M.. ( 2009;). Sexual isolation in Acinetobacter baylyi is locus-specific and varies 10,000-fold over the genome. Genetics 182: 1165–1181 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sabaté M., Moreno E., Pérez T., Andreu A., Prats G.. ( 2006;). Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clin Microbiol Infect 12: 880–886 [CrossRef] [PubMed].
    [Google Scholar]
  35. Schneider G., Dobrindt U., Middendorf B., Hochhut B., Szijártó V., Emödy L., Hacker J.. ( 2011;). Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands. BMC Microbiol 11: 210 [CrossRef] [PubMed].
    [Google Scholar]
  36. Schubert S., Darlu P., Clermont O., Wieser A., Magistro G., Hoffmann C., Weinert K., Tenaillon O., Matic I., Denamur E.. ( 2009;). Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 5: e1000257 [CrossRef] [PubMed].
    [Google Scholar]
  37. Vila J., Simon K., Ruiz J., Horcajada J.P., Velasco M., Barranco M., Moreno A., Mensa J.. ( 2002;). Are quinolone-resistant uropathogenic Escherichia coli less virulent?. J Infect Dis 186: 1039–1042 [CrossRef] [PubMed].
    [Google Scholar]
  38. Vincent C., Boerlin P., Daignault D., Dozois C.M., Dutil L., Galanakis C., Reid-Smith R.J., Tellier P.P., Tellis P.A., other authors. ( 2010;). Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 16: 88–95 [CrossRef] [PubMed].
    [Google Scholar]
  39. Wiles T.J., Kulesus R.R., Mulvey M.A.. ( 2008;). Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 85: 11–19 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000104
Loading
/content/journal/jmm/10.1099/jmm.0.000104
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error