1887

Abstract

It is believed that most microbial infections are caused by pathogens organized in biofilms. Recently, it was shown that the dimorphic fungus , estimated to be the most common cause of fungal respiratory diseases, is also able to form biofilm. Although the antifungal therapy commonly used is effective, refractory cases and recurrences have been reported. In the search for new compounds with antimicrobial activity, the sesquiterpene farnesol has gained prominence for its antifungal action. This study aimed to evaluate the susceptibility of var. to the antifungal agents itraconazole and amphotericin B, and farnesol alone and combined, as well as to determine the antifungal activity of these compounds against biofilms of this pathogen. The results show that farnesol has antifungal activity against in the yeast and filamentous phases, with MIC values ranging from 0.0078 to 0.00312 µM. A synergistic effect (fractional inhibitory concentration index ≤0.5) between itraconazole and farnesol was found against 100 and 83.3 % of the isolates in yeast and mycelial forms, respectively, while synergism between amphotericin B and farnesol was only observed against 37.5 and 44.4 % of the isolates in yeast and filamentous forms, respectively. Afterwards, the antifungal drugs, itraconazole and amphotericin B, and farnesol alone, and the combination of itraconazole and farnesol, were tested against mature biofilms of . , through XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2-tetrazolium hydroxide) metabolic assay, and the itraconazole and amphotericin B showed lower antibiofilm activity when compared to farnesol alone and farnesol combined with itraconazole. In conclusion, farnesol showed promising results as an antifungal agent against and also showed adjuvant action, especially when combined with itraconazole, increasing the fungal susceptibility to this drug.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000030
2015-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/4/394.html?itemId=/content/journal/jmm/10.1099/jmm.0.000030&mimeType=html&fmt=ahah

References

  1. Brilhante R. S., Fechine M. A., Cordeiro R. A., Rocha M. F., Ribeiro J. F., Monteiro A. J., de Lima R. A., Mesquita J. R., de Camargo Z. P., Sidrim J. J.. ( 2010;). In vitro effect of sulfamethoxazole-trimethoprim against Histoplasma capsulatum var. capsulatum. . Antimicrob Agents Chemother 54:, 3978–3979. [CrossRef][PubMed]
    [Google Scholar]
  2. Brilhante R. S., Valente L. G., Rocha M. F., Bandeira T. J., Cordeiro R. A., de Lima R. A., Leite J. J., Ribeiro J. F., Pereira J. F. et al. ( 2012;). Sesquiterpene farnesol contributes to increased susceptibility to β-lactams in strains of Burkholderia pseudomallei. . Antimicrob Agents Chemother 56:, 2198–2200. [CrossRef][PubMed]
    [Google Scholar]
  3. Brilhante R. S. N., de Lima R. A., Caetano E. P., Leite J. J. G., Castelo-Branco D. S. C. M., Ribeiro J. F., Bandeira T. J. P. G., Cordeiro R. A., Monteiro A. J. et al. ( 2013;). Effect of farnesol on growth, ergosterol biosynthesis, and cell permeability in Coccidioides posadasii. . Antimicrob Agents Chemother 57:, 2167–2170. [CrossRef][PubMed]
    [Google Scholar]
  4. Cho T., Aoyama T., Toyoda M., Nakayama H., Chibana H., Kaminishi H., Calderone R. A.. ( 2008;). [Farnesol as a quorum-sensing molecule in Candida albicans]. . Nippon Ishinkin Gakkai Zasshi 49:, 281–286 (in Japanese). [CrossRef][PubMed]
    [Google Scholar]
  5. CLSI (2008). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute..
  6. Cordeiro R. A., Nogueira G. C., Brilhante R. S., Teixeira C. E., Mourão C. I., Castelo-Branco D. S., Paiva M. A., Ribeiro J. F., Monteiro A. J. et al. ( 2012;). Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. . Vet Microbiol 159:, 375–380. [CrossRef][PubMed]
    [Google Scholar]
  7. Cordeiro R. A., Teixeira C. E., Brilhante R. S., Castelo-Branco D. S., Paiva M. A., Giffoni Leite J. J., Lima D. T., Monteiro A. J., Sidrim J. J., Rocha M. F.. ( 2013;). Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. . Med Mycol 51:, 53–59. [CrossRef][PubMed]
    [Google Scholar]
  8. Cushion M. T., Collins M. S., Linke M. J.. ( 2009;). Biofilm formation by Pneumocystis spp. . Eukaryot Cell 8:, 197–206. [CrossRef][PubMed]
    [Google Scholar]
  9. Daher E. F., Silva G. B. Jr, Barros F. A., Takeda C. F., Mota R. M., Ferreira M. T., Oliveira S. A., Martins J. C., Araújo S. M., Gutiérrez-Adrianzén O. A.. ( 2007;). Clinical and laboratory features of disseminated histoplasmosis in HIV patients from Brazil. . Trop Med Int Health 12:, 1108–1115. [CrossRef][PubMed]
    [Google Scholar]
  10. Davis L. E., Cook G., Costerton J. W.. ( 2002;). Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. . Emerg Infect Dis 8:, 376–379. [CrossRef][PubMed]
    [Google Scholar]
  11. Derengowski L. S., De-Souza-Silva C., Braz S. V., Mello-De-Sousa T. M., Báo S. N., Kyaw C. M., Silva-Pereira I.. ( 2009;). Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. . Ann Clin Microbiol Antimicrob 8:, 13. [CrossRef][PubMed]
    [Google Scholar]
  12. Di Bonaventura G., Pompilio A., Picciani C., Iezzi M., D’Antonio D., Piccolomini R.. ( 2006;). Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. . Antimicrob Agents Chemother 50:, 3269–3276. [CrossRef][PubMed]
    [Google Scholar]
  13. Ganguly S., Mitchell A. P.. ( 2011;). Mucosal biofilms of Candida albicans. . Curr Opin Microbiol 14:, 380–385. [CrossRef][PubMed]
    [Google Scholar]
  14. Hornby J. M., Jensen E. C., Lisec A. D., Tasto J. J., Jahnke B., Shoemaker R., Dussault P., Nickerson K. W.. ( 2001;). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. . Appl Environ Microbiol 67:, 2982–2992. [CrossRef][PubMed]
    [Google Scholar]
  15. Inoue Y., Shiraishi A., Hada T., Hirose K., Hamashima H., Shimada J.. ( 2004;). The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. . FEMS Microbiol Lett 237:, 325–331.[PubMed]
    [Google Scholar]
  16. Jabra-Rizk M. A., Meiller T. F., James C. E., Shirtliff M. E.. ( 2006;). Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. . Antimicrob Agents Chemother 50:, 1463–1469. [CrossRef][PubMed]
    [Google Scholar]
  17. Joo J. H., Jetten A. M.. ( 2010;). Molecular mechanisms involved in farnesol-induced apoptosis. . Cancer Lett 287:, 123–135. [CrossRef][PubMed]
    [Google Scholar]
  18. Martinez L. R., Casadevall A.. ( 2006;). Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. . Antimicrob Agents Chemother 50:, 1021–1033. [CrossRef][PubMed]
    [Google Scholar]
  19. Martinez L. R., Fries B. C.. ( 2010;). Fungal biofilms: relevance in the setting of human disease. . Curr Fungal Infect Rep 4:, 266–275. [CrossRef][PubMed]
    [Google Scholar]
  20. Martinez L. R., Ibom D. C., Casadevall A., Fries B. C.. ( 2008;). Characterization of phenotypic switching in Cryptococcus neoformans biofilms. . Mycopathologia 166:, 175–180. [CrossRef][PubMed]
    [Google Scholar]
  21. Mittelman M. W.. ( 1998;). Structure and functional characteristics of bacterial biofilms in fluid processing operations. . J Dairy Sci 81:, 2760–2764. [CrossRef][PubMed]
    [Google Scholar]
  22. Müller F. M. C., Seidler M., Beauvais A.. ( 2011;). Aspergillus fumigatus biofilms in the clinical setting. . Med Mycol 49: (Suppl. 1), S96–S100. [CrossRef][PubMed]
    [Google Scholar]
  23. Odds F. C.. ( 2003;). Synergy, antagonism, and what the chequerboard puts between them. . J Antimicrob Chemother 52:, 1. [CrossRef][PubMed]
    [Google Scholar]
  24. Peeters E., Nelis H. J., Coenye T.. ( 2008;). Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. . J Microbiol Methods 72:, 157–165. [CrossRef][PubMed]
    [Google Scholar]
  25. Phillips P. L., Schultz G. S.. ( 2012;). Molecular mechanisms of biofilm infection: biofilm virulence factors. . Adv Wound Care (New Rochelle) 1:, 109–114. [CrossRef][PubMed]
    [Google Scholar]
  26. Pitangui N. S., Sardi J. C., Silva J. F., Benaducci T., Moraes da Silva R. A., Rodríguez-Arellanes G., Taylor M. L., Mendes-Giannini M. J., Fusco-Almeida A. M.. ( 2012;). Adhesion of Histoplasma capsulatum to pneumocytes and biofilm formation on an abiotic surface. . Biofouling 28:, 711–718. [CrossRef][PubMed]
    [Google Scholar]
  27. Ramage G., Saville S. P., Wickes B. L., López-Ribot J. L.. ( 2002;). Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. . Appl Environ Microbiol 68:, 5459–5463. [CrossRef][PubMed]
    [Google Scholar]
  28. Verstrepen K. J., Klis F. M.. ( 2006;). Flocculation, adhesion and biofilm formation in yeasts. . Mol Microbiol 60:, 5–15. [CrossRef][PubMed]
    [Google Scholar]
  29. Wheat L. J., Connolly P., Smedema M., Rogers P. D.. ( 2009;). Antifungal drug resistance in histoplasmosis. . In Antimicrobial Drug Resistance, pp. 987–992. Edited by Mayers D. L... New York:: Humana Press;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000030
Loading
/content/journal/jmm/10.1099/jmm.0.000030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error