1887

Abstract

Burn intensive care unit (BICU) patients are specifically exposed to deep-seated nosocomial infections due to . Superficial carriage of is a potential source of infection and dissemination, and typing methods could be useful to trace the different isolates. Multilocus sequence typing is a powerful genotyping method for pathogenic micro-organisms, including . Thirty clinical isolates of obtained from 22 patients that were admitted to the BICU from a burn hospital at Sari, Mazandaran state, Iran, were studied epidemiologically by multilocus sequence typing (MLST). Seventy-five variable nucleotide sites were found. Sixty-two alleles were identified among the seven loci of the isolates and one new allele was obtained. Eighteen diploid sequence types (DSTs) were identified, and among those 10 were new. These isolates belonged to nine clonal clusters (CCs) while two isolates occurred as singletons. Eleven (36.7 %) isolates belonged to CC 124 after eBURST analysis and 13 isolates (43.3 %) were assigned to clade 4. Approximately 17 % of the 30 isolates belonged to clade 1 (CC 69 and CC 766). Isolates from several patients with burns were found to be related genetically. Some patients yielded multiple isolates with identical DSTs, suggesting colonization or infection caused by cross-contamination between patients. Isolates that show identical or similar allelic profiles are presumed to be identical or closely related and may be used to evaluate the genetic relationships between isolates from a specific environment such as the BICU.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000015
2015-03-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/3/248.html?itemId=/content/journal/jmm/10.1099/jmm.0.000015&mimeType=html&fmt=ahah

References

  1. Alastruey-Izquierdo A., Mandelblat M., Ben Ami R., Perlin D. S., Segal E.. ( 2013;). Multilocus sequence typing of Candida albicans isolates from candidemia and superficial candidiasis in Israel. . Med Mycol 51:, 755–758. [CrossRef][PubMed]
    [Google Scholar]
  2. Bonfim-Mendonça P. S., Fiorini A., Shinobu-Mesquita C. S., Baeza L. C., Fernandez M. A., Svidzinski T. I. E.. ( 2013;). Molecular typing of Candida albicans isolates from hospitalized patients. . Rev Inst Med Trop Sao Paulo 55:, 385–391. [CrossRef][PubMed]
    [Google Scholar]
  3. Borst A., Theelen B., Reinders E., Boekhout T., Fluit A. C., Savelkoul P. H. M.. ( 2003;). Use of amplified fragment length polymorphism analysis to identify medically important Candida spp., including C. dubliniensis. . J Clin Microbiol 41:, 1357–1362. [CrossRef][PubMed]
    [Google Scholar]
  4. Bougnoux M.-E., Tavanti A., Bouchier C., Gow N. A., Magnier A., Davidson A. D., Maiden M. C. J., D’Enfert C., Odds F. C.. ( 2003;). Collaborative consensus for optimized multilocus sequence typing of Candida albicans. . J Clin Microbiol 41:, 5265–5266. [CrossRef][PubMed]
    [Google Scholar]
  5. Bougnoux M.-E., Aanensen D. M., Morand S., Théraud M., Spratt B. G., d’Enfert C.. ( 2004;). Multilocus sequence typing of Candida albicans: strategies, data exchange and applications. . Infect Genet Evol 4:, 243–252. [CrossRef][PubMed]
    [Google Scholar]
  6. Bougnoux M.-E., Diogo D., François N., Sendid B., Veirmeire S., Colombel J. F., Bouchier C., Van Kruiningen H., d’Enfert C., Poulain D.. ( 2006;). Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. . J Clin Microbiol 44:, 1810–1820. [CrossRef][PubMed]
    [Google Scholar]
  7. Bougnoux M.-E., Kac G., Aegerter P., d’Enfert C., Fagon J.-Y..CandiRea Study Group ( 2008;). Candidemia and candiduria in critically ill patients admitted to intensive care units in France: incidence, molecular diversity, management and outcome. . Intensive Care Med 34:, 292–299. [CrossRef][PubMed]
    [Google Scholar]
  8. Cliff P. R., Sandoe J. A., Heritage J., Barton R. C.. ( 2008;). Use of multilocus sequence typing for the investigation of colonisation by Candida albicans in intensive care unit patients. . J Hosp Infect 69:, 24–32. [CrossRef][PubMed]
    [Google Scholar]
  9. Da Matta D. A., Melo A. S., Guimarães T., Frade J. P., Lott T. J., Colombo A. L.. ( 2010;). Multilocus sequence typing of sequential Candida albicans isolates from patients with persistent or recurrent fungemia. . Med Mycol 48:, 757–762. [CrossRef][PubMed]
    [Google Scholar]
  10. Feil E. J., Li B. C., Aanensen D. M., Hanage W. P., Spratt B. G.. ( 2004;). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. . J Bacteriol 186:, 1518–1530. [CrossRef][PubMed]
    [Google Scholar]
  11. Fesharaki S. H., Haghani I., Mousavi B., Kargar M. L., Boroumand M., Anvari M. S., Abbasi K., Meis J. F., Badali H.. ( 2013;). Endocarditis due to a co-infection of Candida albicans and Candida tropicalis in a drug abuser. . J Med Microbiol 62:, 1763–1767. [CrossRef][PubMed]
    [Google Scholar]
  12. Gammelsrud K. W., Lindstad B. L., Gaustad P., Ingebretsen A., Høiby E. A., Brandtzaeg P., Sandven P.. ( 2012;). Multilocus sequence typing of serial Candida albicans isolates from children with cancer, children with cystic fibrosis and healthy controls. . Med Mycol 50:, 619–626. [CrossRef][PubMed]
    [Google Scholar]
  13. Garcia-Hermoso D., Cabaret O., Lecellier G., Desnos-Ollivier M., Hoinard D., Raoux D., Costa J. M., Dromer F., Bretagne S.. ( 2007;). Comparison of microsatellite length polymorphism and multilocus sequence typing for DNA-based typing of Candida albicans. . J Clin Microbiol 45:, 3958–3963. [CrossRef][PubMed]
    [Google Scholar]
  14. Horn D. L., Neofytos D., Anaissie E. J., Fishman J. A., Steinbach W. J., Olyaei A. J., Marr K. A., Pfaller M. A., Chang C. H., Webster K. M.. ( 2009;). Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. . Clin Infect Dis 48:, 1695–1703. [CrossRef][PubMed]
    [Google Scholar]
  15. Lee H. G., Jang J., Choi J. E., Chung D. C., Han J. W., Woo H., Jeon W., Chun B. C.. ( 2013;). Blood stream infections in patients in the burn intensive care unit. . Infect Chemother 45:, 194–201. [CrossRef][PubMed]
    [Google Scholar]
  16. Maiden M. C.. ( 2006;). Multilocus sequence typing of bacteria. . Annu Rev Microbiol 60:, 561–588. [CrossRef][PubMed]
    [Google Scholar]
  17. Myoung Y., Shin J. H., Lee J. S., Kim S. H., Shin M. G., Suh S. P., Ryang D. W.. ( 2011;). Multilocus sequence typing for Candida albicans isolates from candidemic patients: comparison with Southern blot hybridization and pulsed-field gel electrophoresis analysis. . Korean J Lab Med 31:, 107–114. [CrossRef][PubMed]
    [Google Scholar]
  18. Odds F. C.. ( 2010;). Molecular phylogenetics and epidemiology of Candida albicans. . Future Microbiol 5:, 67–79. [CrossRef][PubMed]
    [Google Scholar]
  19. Odds F. C., Jacobsen M. D.. ( 2008;). Multilocus sequence typing of pathogenic Candida species. . Eukaryot Cell 7:, 1075–1084. [CrossRef][PubMed]
    [Google Scholar]
  20. Odds F. C., Bougnoux M.-E., Shaw D. J., Bain J. M., Davidson A. D., Diogo D., Jacobsen M. D., Lecomte M., Li S. Y. et al. ( 2007;). Molecular phylogenetics of Candida albicans. . Eukaryot Cell 6:, 1041–1052. [CrossRef][PubMed]
    [Google Scholar]
  21. Paluchowska P., Tokarczyk M., Bogusz B., Skiba I., Budak A.. ( 2014;). Molecular epidemiology of Candida albicans and Candida glabrata strains isolated from intensive care unit patients in Poland. . Mem Inst Oswaldo Cruz 109:, 436–441. [CrossRef][PubMed]
    [Google Scholar]
  22. Pfaller M. A., Diekema D. J.. ( 2007;). Epidemiology of invasive candidiasis: a persistent public health problem. . Clin Microbiol Rev 20:, 133–163. [CrossRef][PubMed]
    [Google Scholar]
  23. Robert F., Lebreton F., Bougnoux M. E., Paugam A., Wassermann D., Schlotterer M., Tourte-Schaefer C., Dupouy-Camet J.. ( 1995;). Use of random amplified polymorphic DNA as a typing method for Candida albicans in epidemiological surveillance of a burn unit. . J Clin Microbiol 33:, 2366–2371.[PubMed]
    [Google Scholar]
  24. Sardi J. C., Scorzoni L., Bernardi T., Fusco-Almeida A. M., Mendes Giannini M. J.. ( 2013;). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. . J Med Microbiol 62:, 10–24. [CrossRef][PubMed]
    [Google Scholar]
  25. Shin J. H., Bougnoux M.-E., d’Enfert C., Kim S. H., Moon C.-J., Joo M. Y., Lee K., Kim M. N., Lee H. S. et al. ( 2011;). Genetic diversity among Korean Candida albicans bloodstream isolates: assessment by multilocus sequence typing and restriction endonuclease analysis of genomic DNA by use of BssHII. . J Clin Microbiol 49:, 2572–2577. [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Taylor J. W., Fisher M. C.. ( 2003;). Fungal multilocus sequence typing–it’s not just for bacteria. . Curr Opin Microbiol 6:, 351–356. [CrossRef][PubMed]
    [Google Scholar]
  28. Tortorano A. M., Prigitano A., Dho G., Grancini A., Passera M..ECMM-FIMUA Study Group ( 2012;). Antifungal susceptibility profiles of Candida isolates from a prospective survey of invasive fungal infections in Italian intensive care units. . J Med Microbiol 61:, 389–393. [CrossRef][PubMed]
    [Google Scholar]
  29. Urwin R., Maiden M. C.. ( 2003;). Multi-locus sequence typing: a tool for global epidemiology. . Trends Microbiol 11:, 479–487. [CrossRef][PubMed]
    [Google Scholar]
  30. Vazquez J. A., Sanchez V., Dmuchowski C., Dembry L. M., Sobel J. D., Zervos M. J.. ( 1993;). Nosocomial acquisition of Candida albicans: an epidemiologic study. . J Infect Dis 168:, 195–201. [CrossRef][PubMed]
    [Google Scholar]
  31. Yamada Y., Makimura K., Merhendi H., Ueda K., Nishiyama Y., Yamaguchi H., Osumi M.. ( 2002;). Comparison of different methods for extraction of mitochondrial DNA from human pathogenic yeasts. . Jpn J Infect Dis 55:, 122–125.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000015
Loading
/content/journal/jmm/10.1099/jmm.0.000015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error