Skip to content
1887

Abstract

This territory-wide study investigated the occurrence of faecal carriage of extended-spectrum β-lactamase (ESBL)-producing among wild rodents from the 18 districts in Hong Kong. Individual rectal swabs were obtained from the trapped animals and cultured in plain and selective media. A total of 965 wild rodents [148 chestnut spiny rats (), 326 Indo-Chinese forest rats (), 452 brown rats () and 39 black rats ()] were sampled. ESBL carriage was 0 % in chestnut spiny rats, 0.6 % in Indo-Chinese forest rats, 7.7 % in black rats and 13.9 % in brown rats. Among brown rats, the prevalence of ESBL carriage differed markedly by geographical location: absent in two districts, low (7–10 %) in six districts, moderate (11–19 %) in seven districts and high (21–50 %) in three districts. Nonetheless, there was no correlation between the prevalence of ESBL in brown rats and human population density in the 18 districts. CTX-M-type enzymes were detected in 92.0 % of the ESBL-producing isolates, of which 83.1 % were resistant to three or more non-β-lactam drugs. The CTX-M producing isolates were genetically diverse but a large proportion (47.8 %) were included in six successful clones that are strongly associated with human diseases and CTX-M dissemination, viz. sequence type complex [STC]10/phylogroup A, STC23/phylogroup B1, STC38/phylogroup D, STC155/phylogroup B1, ST405/phylogroup D and ST131/phylogroup B2. In conclusion, our results show that brown rats often carry potentially zoonotic clones of CTX-M producing, multidrug-resistant . The potential for rats to be a source of CTX-M producing for humans deserves further consideration.

Erratum

An erratum has been published for this content:
Erratum
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000001
2015-02-01
2025-01-24
Loading full text...

Full text loading...

References

  1. Banerjee R., Robicsek A., Kuskowski M. A., Porter S., Johnston B. D., Sokurenko E., Tchesnokova V., Price L. B., Johnson J. R. 2013; Molecular epidemiology of Escherichia coli sequence type 131 and Its H30 and H30-Rx subclones among extended-spectrum-β-lactamase-positive and -negative E. coli clinical isolates from the Chicago Region, 2007 to 2010. Antimicrob Agents Chemother 57:6385–6388 [View Article][PubMed]
    [Google Scholar]
  2. Clermont O., Christenson J. K., Denamur E., Gordon D. M. 2013; The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5:58–65 [View Article][PubMed]
    [Google Scholar]
  3. CLSI 2013; Performance Standards for Antimicrobial Susceptibility Testing. , 23rd. Informational Supplement M100-S23 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  4. Collignon P., Powers J. H., Chiller T. M., Aidara-Kane A., Aarestrup F. M. 2009; World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin Infect Dis 49:132–141 [View Article][PubMed]
    [Google Scholar]
  5. D’Andrea M. M., Arena F., Pallecchi L., Rossolini G. M. 2013; CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol 303:305–317 [View Article][PubMed]
    [Google Scholar]
  6. European Food Safety Authority 2013; The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. EFSA Journal 11:1–359
    [Google Scholar]
  7. Gilliver M. A., Bennett M., Begon M., Hazel S. M., Hart C. A. 1999; Antibiotic resistance found in wild rodents. Nature 401:233–234 [View Article][PubMed]
    [Google Scholar]
  8. Gómez Cano A. R., Hernández Fernández M., Alvarez-Sierra M. A. 2013; Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach. PLoS ONE 8:e79080 [View Article][PubMed]
    [Google Scholar]
  9. Guenther S., Grobbel M., Beutlich J., Guerra B., Ulrich R. G., Wieler L. H., Ewers C. 2010; Detection of pandemic B2-O25-ST131 Escherichia coli harbouring the CTX-M-9 extended-spectrum beta-lactamase type in a feral urban brown rat (Rattus norvegicus). J Antimicrob Chemother 65:582–584 [View Article][PubMed]
    [Google Scholar]
  10. Guenther S., Bethe A., Fruth A., Semmler T., Ulrich R. G., Wieler L. H., Ewers C. 2012; Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany. PLoS ONE 7:e50331 [View Article][PubMed]
    [Google Scholar]
  11. Guenther S., Wuttke J., Bethe A., Vojtech J., Schaufler K., Semmler T., Ulrich R. G., Wieler L. H., Ewers C. 2013; Is fecal carriage of extended-spectrum-β-lactamase-producing Escherichia coli in urban rats a risk for public health?. Antimicrob Agents Chemother 57:2424–2425 [View Article][PubMed]
    [Google Scholar]
  12. Himsworth C. G., Parsons K. L., Jardine C., Patrick D. M. 2013; Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector Borne Zoonotic Dis 13:349–359 [View Article][PubMed]
    [Google Scholar]
  13. Ho P. L., Tsang D. N., Que T. L., Ho M., Yuen K. Y. 2000; Comparison of screening methods for detection of extended-spectrum beta-lactamases and their prevalence among Escherichia coli and Klebsiella species in Hong Kong. APMIS 108:237–240 [View Article][PubMed]
    [Google Scholar]
  14. Ho P. L., Chow K. H., Lai E. L., Lo W. U., Yeung M. K., Chan J., Chan P. Y., Yuen K. Y. 2011a; Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to ‘critically important’ antibiotics among food animals in Hong Kong, 2008-10. J Antimicrob Chemother 66:765–768 [View Article][PubMed]
    [Google Scholar]
  15. Ho P. L., Lo W. U., Wong R. C., Yeung M. K., Chow K. H., Que T. L., Tong A. H., Bao J. Y., Lok S., Wong S. S. 2011b; Complete sequencing of the FII plasmid pHK01, encoding CTX-M-14, and molecular analysis of its variants among Escherichia coli from Hong Kong. J Antimicrob Chemother 66:752–756 [View Article][PubMed]
    [Google Scholar]
  16. Ho P. L., Lo W. U., Yeung M. K., Li Z., Chan J., Chow K. H., Yam W. C., Tong A. H., Bao J. Y. et al. 2012a; Dissemination of pHK01-like incompatibility group IncFII plasmids encoding CTX-M-14 in Escherichia coli from human and animal sources. Vet Microbiol 158:172–179 [View Article][PubMed]
    [Google Scholar]
  17. Ho P. L., Yeung M. K., Lo W. U., Tse H., Li Z., Lai E. L., Chow K. H., To K. K., Yam W. C. 2012b; Predominance of pHK01-like incompatibility group FII plasmids encoding CTX-M-14 among extended-spectrum beta-lactamase-producing Escherichia coli in Hong Kong, 1996-2008. Diagn Microbiol Infect Dis 73:182–186 [View Article][PubMed]
    [Google Scholar]
  18. Ho P. L., Chan J., Lo W. U., Law P. Y., Li Z., Lai E. L., Chow K. H. 2013; Dissemination of plasmid-mediated fosfomycin resistance fosA3 among multidrug-resistant Escherichia coli from livestock and other animals. J Appl Microbiol 114:695–702 [View Article][PubMed]
    [Google Scholar]
  19. Kola A., Kohler C., Pfeifer Y., Schwab F., Kühn K., Schulz K., Balau V., Breitbach K., Bast A. et al. 2012; High prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J Antimicrob Chemother 67:2631–2634 [View Article][PubMed]
    [Google Scholar]
  20. Lo W. U., Ho P. L., Chow K. H., Lai E. L., Yeung F., Chiu S. S. 2010; Fecal carriage of CTXM type extended-spectrum beta-lactamase-producing organisms by children and their household contacts. J Infect 60:286–292 [View Article][PubMed]
    [Google Scholar]
  21. Lo W. U., Chow K. H., Law P. Y., Ng K. Y., Cheung Y. Y., Lai E. L., Ho P. L. 2014; Highly conjugative IncX4 plasmids carrying blaCTX-M in Escherichia coli from humans and food animals. J Med Microbiol 63:835–840 [View Article][PubMed]
    [Google Scholar]
  22. Manges A. R., Johnson J. R. 2012; Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 55:712–719 [View Article][PubMed]
    [Google Scholar]
  23. Meerburg B. G., Singleton G. R., Kijlstra A. 2009; Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 35:221–270 [View Article][PubMed]
    [Google Scholar]
  24. Naseer U., Sundsfjord A. 2011; The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist 17:83–97 [View Article][PubMed]
    [Google Scholar]
  25. Skurnik D., Ruimy R., Andremont A., Amorin C., Rouquet P., Picard B., Denamur E. 2006; Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. J Antimicrob Chemother 57:1215–1219 [View Article][PubMed]
    [Google Scholar]
  26. Woerther P. L., Burdet C., Chachaty E., Andremont A. 2013; Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 26:744–758 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.000001
Loading
/content/journal/jmm/10.1099/jmm.0.000001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error