1887

Abstract

This territory-wide study investigated the occurrence of faecal carriage of extended-spectrum β-lactamase (ESBL)-producing among wild rodents from the 18 districts in Hong Kong. Individual rectal swabs were obtained from the trapped animals and cultured in plain and selective media. A total of 965 wild rodents [148 chestnut spiny rats (), 326 Indo-Chinese forest rats (), 452 brown rats () and 39 black rats ()] were sampled. ESBL carriage was 0 % in chestnut spiny rats, 0.6 % in Indo-Chinese forest rats, 7.7 % in black rats and 13.9 % in brown rats. Among brown rats, the prevalence of ESBL carriage differed markedly by geographical location: absent in two districts, low (7–10 %) in six districts, moderate (11–19 %) in seven districts and high (21–50 %) in three districts. Nonetheless, there was no correlation between the prevalence of ESBL in brown rats and human population density in the 18 districts. CTX-M-type enzymes were detected in 92.0 % of the ESBL-producing isolates, of which 83.1 % were resistant to three or more non-β-lactam drugs. The CTX-M producing isolates were genetically diverse but a large proportion (47.8 %) were included in six successful clones that are strongly associated with human diseases and CTX-M dissemination, viz. sequence type complex [STC]10/phylogroup A, STC23/phylogroup B1, STC38/phylogroup D, STC155/phylogroup B1, ST405/phylogroup D and ST131/phylogroup B2. In conclusion, our results show that brown rats often carry potentially zoonotic clones of CTX-M producing, multidrug-resistant . The potential for rats to be a source of CTX-M producing for humans deserves further consideration.

Erratum
This article contains a correction applying to the following content:
Erratum
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000001
2015-02-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/2/185.html?itemId=/content/journal/jmm/10.1099/jmm.0.000001&mimeType=html&fmt=ahah

References

  1. Banerjee R., Robicsek A., Kuskowski M. A., Porter S., Johnston B. D., Sokurenko E., Tchesnokova V., Price L. B., Johnson J. R.. ( 2013;). Molecular epidemiology of Escherichia coli sequence type 131 and Its H30 and H30-Rx subclones among extended-spectrum-β-lactamase-positive and -negative E. coli clinical isolates from the Chicago Region, 2007 to 2010. . Antimicrob Agents Chemother 57:, 6385–6388. [CrossRef][PubMed]
    [Google Scholar]
  2. Clermont O., Christenson J. K., Denamur E., Gordon D. M.. ( 2013;). The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. . Environ Microbiol Rep 5:, 58–65. [CrossRef][PubMed]
    [Google Scholar]
  3. CLSI ( 2013;). Performance Standards for Antimicrobial Susceptibility Testing. ; , 23rd. Informational Supplement M100-S23. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  4. Collignon P., Powers J. H., Chiller T. M., Aidara-Kane A., Aarestrup F. M.. ( 2009;). World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies for the use of antimicrobials in food production animals. . Clin Infect Dis 49:, 132–141. [CrossRef][PubMed]
    [Google Scholar]
  5. D’Andrea M. M., Arena F., Pallecchi L., Rossolini G. M.. ( 2013;). CTX-M-type β-lactamases: a successful story of antibiotic resistance. . Int J Med Microbiol 303:, 305–317. [CrossRef][PubMed]
    [Google Scholar]
  6. European Food Safety Authority ( 2013;). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. . EFSA Journal 11:, 1–359.
    [Google Scholar]
  7. Gilliver M. A., Bennett M., Begon M., Hazel S. M., Hart C. A.. ( 1999;). Antibiotic resistance found in wild rodents. . Nature 401:, 233–234. [CrossRef][PubMed]
    [Google Scholar]
  8. Gómez Cano A. R., Hernández Fernández M., Alvarez-Sierra M. A.. ( 2013;). Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach. . PLoS ONE 8:, e79080. [CrossRef][PubMed]
    [Google Scholar]
  9. Guenther S., Grobbel M., Beutlich J., Guerra B., Ulrich R. G., Wieler L. H., Ewers C.. ( 2010;). Detection of pandemic B2-O25-ST131 Escherichia coli harbouring the CTX-M-9 extended-spectrum beta-lactamase type in a feral urban brown rat (Rattus norvegicus). . J Antimicrob Chemother 65:, 582–584. [CrossRef][PubMed]
    [Google Scholar]
  10. Guenther S., Bethe A., Fruth A., Semmler T., Ulrich R. G., Wieler L. H., Ewers C.. ( 2012;). Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany. . PLoS ONE 7:, e50331. [CrossRef][PubMed]
    [Google Scholar]
  11. Guenther S., Wuttke J., Bethe A., Vojtech J., Schaufler K., Semmler T., Ulrich R. G., Wieler L. H., Ewers C.. ( 2013;). Is fecal carriage of extended-spectrum-β-lactamase-producing Escherichia coli in urban rats a risk for public health?. Antimicrob Agents Chemother 57:, 2424–2425. [CrossRef][PubMed]
    [Google Scholar]
  12. Himsworth C. G., Parsons K. L., Jardine C., Patrick D. M.. ( 2013;). Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. . Vector Borne Zoonotic Dis 13:, 349–359. [CrossRef][PubMed]
    [Google Scholar]
  13. Ho P. L., Tsang D. N., Que T. L., Ho M., Yuen K. Y.. ( 2000;). Comparison of screening methods for detection of extended-spectrum beta-lactamases and their prevalence among Escherichia coli and Klebsiella species in Hong Kong. . APMIS 108:, 237–240. [CrossRef][PubMed]
    [Google Scholar]
  14. Ho P. L., Chow K. H., Lai E. L., Lo W. U., Yeung M. K., Chan J., Chan P. Y., Yuen K. Y.. ( 2011a;). Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to ‘critically important’ antibiotics among food animals in Hong Kong, 2008-10. . J Antimicrob Chemother 66:, 765–768. [CrossRef][PubMed]
    [Google Scholar]
  15. Ho P. L., Lo W. U., Wong R. C., Yeung M. K., Chow K. H., Que T. L., Tong A. H., Bao J. Y., Lok S., Wong S. S.. ( 2011b;). Complete sequencing of the FII plasmid pHK01, encoding CTX-M-14, and molecular analysis of its variants among Escherichia coli from Hong Kong. . J Antimicrob Chemother 66:, 752–756. [CrossRef][PubMed]
    [Google Scholar]
  16. Ho P. L., Lo W. U., Yeung M. K., Li Z., Chan J., Chow K. H., Yam W. C., Tong A. H., Bao J. Y. et al. ( 2012a;). Dissemination of pHK01-like incompatibility group IncFII plasmids encoding CTX-M-14 in Escherichia coli from human and animal sources. . Vet Microbiol 158:, 172–179. [CrossRef][PubMed]
    [Google Scholar]
  17. Ho P. L., Yeung M. K., Lo W. U., Tse H., Li Z., Lai E. L., Chow K. H., To K. K., Yam W. C.. ( 2012b;). Predominance of pHK01-like incompatibility group FII plasmids encoding CTX-M-14 among extended-spectrum beta-lactamase-producing Escherichia coli in Hong Kong, 1996-2008. . Diagn Microbiol Infect Dis 73:, 182–186. [CrossRef][PubMed]
    [Google Scholar]
  18. Ho P. L., Chan J., Lo W. U., Law P. Y., Li Z., Lai E. L., Chow K. H.. ( 2013;). Dissemination of plasmid-mediated fosfomycin resistance fosA3 among multidrug-resistant Escherichia coli from livestock and other animals. . J Appl Microbiol 114:, 695–702. [CrossRef][PubMed]
    [Google Scholar]
  19. Kola A., Kohler C., Pfeifer Y., Schwab F., Kühn K., Schulz K., Balau V., Breitbach K., Bast A. et al. ( 2012;). High prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. . J Antimicrob Chemother 67:, 2631–2634. [CrossRef][PubMed]
    [Google Scholar]
  20. Lo W. U., Ho P. L., Chow K. H., Lai E. L., Yeung F., Chiu S. S.. ( 2010;). Fecal carriage of CTXM type extended-spectrum beta-lactamase-producing organisms by children and their household contacts. . J Infect 60:, 286–292. [CrossRef][PubMed]
    [Google Scholar]
  21. Lo W. U., Chow K. H., Law P. Y., Ng K. Y., Cheung Y. Y., Lai E. L., Ho P. L.. ( 2014;). Highly conjugative IncX4 plasmids carrying blaCTX-M in Escherichia coli from humans and food animals. . J Med Microbiol 63:, 835–840. [CrossRef][PubMed]
    [Google Scholar]
  22. Manges A. R., Johnson J. R.. ( 2012;). Food-borne origins of Escherichia coli causing extraintestinal infections. . Clin Infect Dis 55:, 712–719. [CrossRef][PubMed]
    [Google Scholar]
  23. Meerburg B. G., Singleton G. R., Kijlstra A.. ( 2009;). Rodent-borne diseases and their risks for public health. . Crit Rev Microbiol 35:, 221–270. [CrossRef][PubMed]
    [Google Scholar]
  24. Naseer U., Sundsfjord A.. ( 2011;). The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. . Microb Drug Resist 17:, 83–97. [CrossRef][PubMed]
    [Google Scholar]
  25. Skurnik D., Ruimy R., Andremont A., Amorin C., Rouquet P., Picard B., Denamur E.. ( 2006;). Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. . J Antimicrob Chemother 57:, 1215–1219. [CrossRef][PubMed]
    [Google Scholar]
  26. Woerther P. L., Burdet C., Chachaty E., Andremont A.. ( 2013;). Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. . Clin Microbiol Rev 26:, 744–758. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000001
Loading
/content/journal/jmm/10.1099/jmm.0.000001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error