1887

Abstract

On the assumption that specific host defences are lower in newborn and infant animals, the susceptibility of CD1 suckling mice to was studied with the hypothesis that this model could detect consistent differences in virulence among isolates from various clinical and environmental sources. Mice 3−14 days old were indeed markedly susceptible to intraperitoneal challenge with fresh clinical isolates, but not to serially subcultured or type collection strains of For example, intraperitoneal inoculation of 10cells of a fresh clinical isolate of (strain Monza 3) caused 60% mortality of suckling mice in 1 day whereas the same number of cells of a culture-attenuated derivative (strain Monza 3p50) caused <10% mortality in >15 days. Lethal infection by the ‘virulent’ Monza 3 strain was strictly dependent on mouse age (no death was observed in mice >26 days old), required the inoculation of viable cells and was not related to endotoxin production. The ‘virulent’ strain was cleared from mouse lungs less rapidly, while adhering to, and being internalised into the peritoneal exudate cells (PEC) of suckling mice to a greater extent, than the avirulent derivative, as shown by immunofluorescence and confocal microscopy. The Monza 3 strain also induced the production by PEC of 5-to-10 times more tumour necrosis factor-alpha (TNF-α) mRNA than the Monza 3p50 strain. Overall, suckling CD1 mice appear to provide a promising, easily handled, highly reproducible and relatively inexpensive animal model for studies of the virulence of , and possibly, of the role of pro-inflammatory cytokine production in this phenomenon.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-8-647
1997-08-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/8/medmicro-46-8-647.html?itemId=/content/journal/jmm/10.1099/00222615-46-8-647&mimeType=html&fmt=ahah

References

  1. Fraser D. W. Sources of legionellosis. In Thomsberry C., Balows A., Feeley J. C., Jakubowski W. (eds) Legionella, Proceedings of the 2nd International Symposium Washington, DC: American Society for Microbiology; 1984277–280
    [Google Scholar]
  2. McDade J. E., Shepard C. C., Fraser D. W. and the Laboratory Investigation Team. Isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 1977; 297:1197–1203
    [Google Scholar]
  3. Arko R. J., Wong K. H., Feeley J. C. Immunologic factors affecting the in vivo and in-vitro survival of the Legionnaires’ disease bacterium. Ann Intern Med 1979; 90:680–683
    [Google Scholar]
  4. Drutz D. J., De Marsh P., Edelstein P. Legionella pneumophila pneumonia in athymic nude mice. In Thomsberry C., Balows A., Feeley J. C., Jakubowski W. (eds) Legionella, Proceedings of the 2nd International Symposium Washington, DC: American Society for Microbiology; 1984134–135
    [Google Scholar]
  5. Eisenstein T. K., Friedman H. Immunity to Legionella . In Katz S. M. (ed) Legionellosis 2nd edn Boca Raton, FL: CRC Press; 1985159–169
    [Google Scholar]
  6. Saravolatz L. D., Burch K. H., Fisher E. The compromised host and Legionnaires’ disease. Ann Intern Med 1979; 90:533–537
    [Google Scholar]
  7. Widen R., Klein T., Friedman H. Enhanced susceptibility of cyclophosphamide-treated mice to infection with Legionella pneumophila . J Infect Dis 1984; 149:1023–1024
    [Google Scholar]
  8. Yamamoto Y., Klein T. W., Friedman H. Legionella pneumophila intracellular growth in normal vs. immune guinea pigs macrophages cultures. Curr Microbiol 1988; 16:333–336
    [Google Scholar]
  9. Dreyfus L. A. Virulence associated ingestion of Legionella pneumophila by HeLa cells. Microb Pathog 1987; 3:45–52
    [Google Scholar]
  10. Fields B. S., Barbaree J. M., Shotts E. B. Comparison of guinea-pig and protozoan models for determining virulence of Legionella species. Infect Immun 1986; 53:553–559
    [Google Scholar]
  11. Fitzgeorge R. B., Baskerville A., Broster M., Hambleton P., Dennis P. J. Aerosol infection of animals with strains of Legionella pneumophila of different virulence: comparison with intraperitoneal and intranasal routes of infection. J Hyg 1983; 90:81–89
    [Google Scholar]
  12. Jepras R. I., Fitzgeorge R. B., Baskerville A. A comparison of virulence of two strains of Legionella pneumophila based on experimental aerosol infection of guinea-pigs. J Hyg 1985; 95:29–38
    [Google Scholar]
  13. Pearlman E., Jiwa A. H., Engleberg N. C., Eisenstein B. L. Growth of Legionella pneumophila in a human macrophage-like (U937) cell line. Microb Pathog 1988; 5:87–95
    [Google Scholar]
  14. Baskerville A., Dowsett A. B., Fitzgeorge R. B., Hambleton P., Broster M. Ultrastructure of pulmonary alveoli and macrophages in experimental Legionnaires’ disease. J Pathol 1983; 140:77–90
    [Google Scholar]
  15. Collins M. T. Legionella infections in animals. Isr J Med Sci 1986; 22:662–673
    [Google Scholar]
  16. Davis G. S., Winn W. C., Gump D. W., Craighead J. E., Beaty H. N. Legionnaires’ pneumonia after aerosol exposure in guinea pigs and rats. Am Rev Respir Dis 1982; 126:1050–1057
    [Google Scholar]
  17. Hedlund K. W., McGann V. G., Copeland D. S., Little S. F., Allen R. G. Immunologic protection against the Legionnaires’ disease bacterium in the AKR/J mouse. Ann Intern Med 1979; 90:676–679
    [Google Scholar]
  18. Yamamoto Y., Klein T. W., Newton C. A., Widen R., Friedman H. Growth of Legionella pneumophila in thioglycollate-elicited peritoneal macrophages from A/J mice. Infect Immun 1988; 56:370–375
    [Google Scholar]
  19. Blanchard D. K., Friedman H., Stewart W. E., Klein T. W., Djeu J. Y. Role of gamma interferon in induction of natural killer activity by Legionella pneumophila “in vitro” and in an experimental murine infection model. Infect Immun 1988; 56:1187–1193
    [Google Scholar]
  20. Castellani Pastoris M., Volpi E. Susceptibility of suckling mice to intraperitoneal challenge with Legionella pneumophila . 1992 International Symposium on Legionella Orlando, FL: 26–29 January 1992 p 12 Abstract nos. 15
    [Google Scholar]
  21. Castellani Pastoris M., Proietti E., Volpi E., D’Urso D. Suckling mouse as a suitable experimental animal model for Legionella infection studies. 6th European Congress of Clinical Microbiology and Infectious Diseases Seville, Spain: 28–31 March 1993 Book of abstracts p 205 Abstract no. 809
    [Google Scholar]
  22. Edelstein P. H. Improved semiselective medium for isolation of Legionella pneumophila from contaminated clinical and environmental specimens. J Clin Microbiol 1981; 14:298–303
    [Google Scholar]
  23. Dennis P. J., Bartlett C. L.R., Wright A. E. Comparison of isolation methods for Legionella spp. In Thomsberry C., Balows A., Feeley J. C., Jakubowski W. (eds) Legionella, Proceedings of the 2nd International Symposium Washington, DC: American Society for Microbiology; 1984294–296
    [Google Scholar]
  24. Watkins I. D., Tobin J. O.H., Dennis P. J., Brown W., Newnham R., Kurtz J. B. Legionella pneumophila serogroup 1 subgrouping by monoclonal antibodies – an epidemiological tool. J Hyg 1985; 95:211–216
    [Google Scholar]
  25. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162:156–159
    [Google Scholar]
  26. Blackmon J. A., Hicklin M. D., Chandler F. W. Legionnaires’ disease. Pathological and historical aspects of a ‘new’ disease. Arch Pathol Lab Med 1978; 102:337–343
    [Google Scholar]
  27. Blanchard D. K., Djeu J. Y., Klein T. W., Friedman H., Stewart W. E. Induction of tumor necrosis factor by Legionella pneumophila . Infect Immun 1987; 55:433–437
    [Google Scholar]
  28. Matsiota-Bemard P., Lẻfẻbre C., Sedqui M., Comillet P., Guenounou M. Involvement of tumor necrosis factor alpha in intracellular multiplication of Legionella pneumophila in human monocytes. Infect Immun 1993; 61:4980–4983
    [Google Scholar]
  29. Yoshida S., Mizuguchi Y. Multiplication of Legionella pneumophila Philadelphia-1 in cultured peritoneal macrophages and its correlation to susceptibility of animals. Can J Microbiol 1986; 32:438–442
    [Google Scholar]
  30. Yamamoto Y., Klein T. W., Friedman H. Legionella pneumophila growth in macrophages from susceptible mice is genetically controlled. Proc Soc Exp Biol Med 1991; 196:405–409
    [Google Scholar]
  31. Brieland J., Freeman P., Kunkel R. Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires’ disease. Am J Pathol 1994; 145:1537–1546
    [Google Scholar]
  32. Horwitz M. A., Silverstein S. C. Legionnaires’ disease bacterium (Legionella pneumophila) multiplies intracellularly in human monocytes. J Clin Invest 1980; 66:441–450
    [Google Scholar]
  33. Kishimoto R. A., White J. D., Shirey F. G. In-vitro response of guinea pig peritoneal macrophages to Legionella pneumophila . Infect Immun 1981; 31:1209–1213
    [Google Scholar]
  34. Yamamoto Y., Klein T. W., Newton C. A., Friedman H. Interaction of Legionella pneumophila with peritoneal macrophages from various mouse strains. Adv Exp Med Biol 1988; 239:89–98
    [Google Scholar]
  35. Wright J. B., Rechnitzer C., Kharazmi A., Sorensen B. A., Bertelsen T. B. Guinea pig alveolar macrophage function during the course of a sublethal Legionella pneumophila infection. ImmunInfect Dis 1993; 3:181–187
    [Google Scholar]
  36. Friedman H., Klein T. W., Widen R., Newton C., Blanchard D. K., Yamamoto Y. Legionella pneumophila immunity and immunomodulation: nature and mechanisms. Adv Exp Med Biol 1988; 239:327–341
    [Google Scholar]
  37. Hedlund K. W. Legionella toxin. Pharmacol Ther 1981; 15:123–130
    [Google Scholar]
  38. Husmann L. K., Johnson W. Cytotoxicity of extracellular Legionella pneumophila . Infect Immun 1994; 62:2111–2114
    [Google Scholar]
  39. Klein T. W., Yamamoto Y., Wilson S., Newton C., Friedman H. Legionella pneumophila infection and cytokine production. Adv Exp Med Biol 1992; 319:97–104
    [Google Scholar]
  40. Brieland J. K., Remick D. G., Freeman P. T., Hurley M. C., Fantone J. C., Engleberg N. C. In vivo regulation of replicative Legionella pneumophila lung infection by endogenous tumor necrosis factor alpha and nitric oxide. Infect Immun 1995; 63:3253–3258
    [Google Scholar]
  41. Beutler B., Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 1986; 320:584–588
    [Google Scholar]
/content/journal/jmm/10.1099/00222615-46-8-647
Loading
/content/journal/jmm/10.1099/00222615-46-8-647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error