1887

Abstract

Summary

Coagulase-negative staphylococci isolated from patients with endocarditis were divided according to whether the infection was of native or of prosthetic valves and was acquired either in the community or in hospital. Comparisons were made with strains from intravenous line-associated bacteraemias. All strains were examined by direct and indirect adherence tests. Line-associated bacteraemia strains were more likely to produce slime and were more hydrophilic but were less likely to attach HEp2 tissue culture cells than were endocarditis strains, and almost equally likely to adhere to plastic and extracellular matrix proteins. Amongst the endocarditis strains, there was little difference in slime production but hospital-acquired or prosthetic-valve strains were more hydrophobic and more likely to adhere to silicone than were the native-valve or community-acquired strains. Exposure of extracellular matrix proteins on native valves due to a pre-existing non-infective heart condition may account for the selection of strains able to adhere to fibronectin or laminin.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-43-3-161
1995-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/43/3/medmicro-43-3-161.html?itemId=/content/journal/jmm/10.1099/00222615-43-3-161&mimeType=html&fmt=ahah

References

  1. Baddour L. M. Twelve-year review of recurrent native-valve infective endocarditis: a disease of the modern antibiotic era. Rev Infect Dis 1988; 10:1163–1170
    [Google Scholar]
  2. Schmidt B. K., Kirpalani H. M., Corey M., Low D. E., Philip A. G. S., Ford-Jones E. L. Coagulase-negative staphylococci as true pathogens in newborn infants: a cohort study. Pediatr Infect Dis J 1988; 6:1026–1031
    [Google Scholar]
  3. Patrick C. C. Coagulase-negative staphylococci: pathogens with increasing clinical significance. J Pediatr 1990; 116:497–507
    [Google Scholar]
  4. Fidalgo S., Vazquez F., Mendoza M. C., Perez F., Mendez F. J. Bacteraemia due to Staphylococcus epidermidis: microbiologic, epidemiologic, clinical, and prognostic features. Rev Infect Dis 1990; 12:520–528
    [Google Scholar]
  5. Baltimore R. S. Infective endocarditis in children. Pediatr Infect Dis J 1992; 11:907–912
    [Google Scholar]
  6. Wilson C. R., Totten P. A., Baldwin J. N. Rapid procedure for the detection of plasmids in Staphylococcus epidermidis. Appl Environ Microbiol 1978; 36:368–374
    [Google Scholar]
  7. Pierre J., Gutmann L., Bornet M., Bergogne-Berezin E., Williamson R. Identification of coagulase-negative staphylococci by electrophoretic profile of total proteins and analysis of penicillin-binding proteins. J Clin Microbiol 1990; 28:443–446
    [Google Scholar]
  8. Paulsson M., Petersson A. C., Ljungh A. Serum and tissue protein binding and cell surface properties of Staphylococcus lugdunensis. J Med Microbiol 1993; 38:96–102
    [Google Scholar]
  9. Dryden M. S., Talsania H. G., Martin S. Evaluation of methods for typing coagulase-negative staphylococci. J Med Microbiol 1992; 37:109–117
    [Google Scholar]
  10. Lindahl M., Faris A., Wadstrom T., Hjerten S. A new test based on “salting out” to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 1981; 677:471–476
    [Google Scholar]
  11. Ljungh A., Hjerten S., Wadstrom T. High surface hydrophobicity of autoagglutinating Staphylococcus aureus strains isolated from human infections studied with the salt aggregation test. Infect Immun 1985; 47:522–526
    [Google Scholar]
  12. Freeman D. J., Falkiner F. R., Keane C. T. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42:872–874
    [Google Scholar]
  13. Christensen G. D., Simpson W. A., Younger J. J Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985; 22:996–1006
    [Google Scholar]
  14. Wilcox M. H., Finch R. G., Smith D. G., Williams P., Denyer S. P. Effects of carbon dioxide and sub-lethal levels of antibiotics on adherence of coagulase-negative staphylococci to poly-styrene and silicone rubber. J Antimicrob Chemother 1991; 27:577–587
    [Google Scholar]
  15. Naidu A. S., Paulsson M., Wadstrom T. Particle agglutination assays for rapid detection of fibronectin, fibrinogen, and collagen receptors on Staphylococcus aureus. J Clin Microbiol 1988; 26:1549–1554
    [Google Scholar]
  16. Cree R. G. A., Aleljung P., Paulsson M. Cell surface hydrophobicity and adherence to extracellular matrix proteins in two collections of methicillin-resistant. Staphylococcus aureus Epidemiol Infect 1993; 112:307–314
    [Google Scholar]
  17. Cree R. G. A. Investigation of the adherence properties of staphylococci PhD Thesis University of London: 1993
    [Google Scholar]
  18. Vuento M., Vaheri A. Purification of fibronectin from human plasma by affinity chromatography under non-denaturing conditions. Biochem J 1979; 183:331–337
    [Google Scholar]
  19. Valkonen K. H., Veljola A., Dagberg B., Uhlin B. E. Binding of basement-membrane laminin by Escherichia coli. Mol Microbiol 1991; 5:2133–2141
    [Google Scholar]
  20. Yatango T., Izumi M., Kashiwagi H., Hayashi M. Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct 1988; 13:281–292
    [Google Scholar]
  21. Etienne J., Eykyn S. J. Increase in native valve endocarditis caused by coagulase negative staphylococci: an Anglo-French clinical and microbiological study. Br Heart J 1990; 64:381–384
    [Google Scholar]
  22. Etienne J., Brun Y., El Solh N. Characterization of clinically significant isolates of Staphylococcus epidermidis from patients with endocarditis. J Clin Microbiol 1988; 26:613–617
    [Google Scholar]
  23. Birnbaum D., Kelly M., Chow A. W. Epidemiologic typing systems for coagulase-negative staphylococci. Infect Control Hosp Epidemiol 1991; 12:319–326
    [Google Scholar]
  24. Archer G. L., Vishniavsky N., Stiver H. G. Plasmid pattern analysis of Staphylococcus epidermidis isolates from patients with prosthetic valve endocarditis. Infect Immun 1982; 35:627–632
    [Google Scholar]
  25. Dunkle L. M., Blair L. L., Fortune K. P. Transformation of a plasmid encoding an adhesin of Staphylococcus aureus into a non-adherent staphylococcal strain. J Infect Dis 1986; 153:670–675
    [Google Scholar]
  26. Plaunt M. R., Patrick C. C. Identification of the innate human immune response to surface-exposed proteins of coagulase-negative staphylococci. J Clin Microbiol 1991; 29:857–861
    [Google Scholar]
  27. Paulsson M., Liang O. D., Ascencio F., Wadstromm T. Vitronectin-binding surface properties of Staphylococcus aureus. Int J Med Microbiol Virol Parasitol Infect Dis 1992; 277:54–64
    [Google Scholar]
  28. Wadstrom T., Paulsson M., Ljungh A. Molecular pathogenesis of staphylococcal infections: microbial adhesion to extracellular matrix and colonization of wounded tissues and biomaterial surface. In Mollby R., Flock J.-I., Nord C. E. (eds) Staphylococci and staphylococcal infection Zentralbl Bakteriol; Suppl 26 1994343–352
    [Google Scholar]
  29. Herrmann M., Vaudaux P. E., Pittet D. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 1988; 158:693–701
    [Google Scholar]
  30. Wyatt J. E., Poston S. M., Noble W. C. Adherence of Staphylococcus aureus to cell monolayers. J Appl Bacteriol 1990; 69:834–844
    [Google Scholar]
  31. Bayston R., Penny S. R. Excessive production of mucoid substance in staphylococcus SIIA: a possible factor in colonisation of Holter shunts. Dev Med Child Neurol 1972; 27: Suppl 25–28
    [Google Scholar]
  32. Dunne W. M., Burd E. M. Fibronectin and proteolytic fragments of fibronectin interfere with the adhesion of Staphylococcus epidermidis to plastic. J Appl Bacteriol 1993; 74:411–416
    [Google Scholar]
  33. Steckelberg J. M., Keating M. R., Rouse M. S., Wilson W. R. Lack of extracellular slime effect on treatment outcome of Staphylococcus epidermidis experimental endocarditis. J Antimicrob Chemother 1989; 23:117–121
    [Google Scholar]
  34. Hjerten S., Wadstrom T. What types of bonds are responsible for the adhesion of bacteria and viruses to native and artificial surfaces?. In Wadstrom T., Eliasson I., Holder I. (eds) Pathogenesis of wound and biomaterial-associated infections London: Springer Verlag; 1990245–253
    [Google Scholar]
  35. Peters G., Locci R., Pulverer G. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl Bakteriol Mikrobiol Hyg B 1981; 173:293–299
    [Google Scholar]
  36. Timmerman C. P., Fleer A., Besnier J. M., De Graff L., Cremers F., Verhoef J. Characterization of a proteinaceous adhesin of Staphylococcus epidermidis which mediates attachment to polystyrene. Infect Immun 1991; 59:4187–4192
    [Google Scholar]
  37. Campbell K. M., Johnson C. M. Identification of Staphylococcus aureus binding proteins on isolated porcine cardiac valve cells. J Lab Clin Med 1990; 115:217–223
    [Google Scholar]
  38. Proctor R. A., Mosher D. F., Olbrantz P. J. Fibronectin binding to Staphylococcus aureus. J Biol Chem 1982; 257:14788–14794
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-43-3-161
Loading
/content/journal/jmm/10.1099/00222615-43-3-161
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error