1887

Abstract

Summary

Human lactoferrin (HLf) is an iron-binding protein with antimicrobial activity that is present in high concentrations in milk and various exocrine secretions. HLf is also an acute-phase protein secreted by polymorphonuclear leucocytes, and its binding to a large number of clinical isolates of has been described recently from our laboratory. We have now characterised the HLf-staphylococcal interaction in strain MAS-89. The binding of I-HLf to strain MAS-89 reached saturation in <90 min and was maximal between pH 4 and 9. Unlabelled HLf displaced I-HLf binding. Various plasma and subepithelial matrix proteins, such as IgG, fibrinogen, fibronectin, collagen and laminin, which are known to interact specifically with , did not interfere with HLf binding. A Scatchard plot was non-linear; this implied a low affinity (1‡55 × 10 L/mol) and a high affinity (2‡70 × 10 L/mol) binding mechanism. We estimated that there were 5700 HLf binding sites/cell. The staphylococcal HLf-binding protein (HLf-BP) was partially susceptible to proteolytic enzymes or periodate treatment and was resistant to glycosidases. An active HLf-BP with an apparent M of 450 Kda was isolated from strain MAS-89 cell lysate by ion-exchange chromatography on Q-sepharose. In SDS-PAGE, the reduced HLf-BP was resolved into two components of 67 and 62 Kda. The two components demonstrated a positive reaction with HLf-HRPO in a Western blot. These data establish that there is a specific receptor for HLf in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-3-177
1992-03-01
2022-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/3/medmicro-36-3-177.html?itemId=/content/journal/jmm/10.1099/00222615-36-3-177&mimeType=html&fmt=ahah

References

  1. Masson P. L., Heremans J. F., Dive C. An iron-binding protein common to many external secretions. Clin Chim Acta 1966; 14:735–739
    [Google Scholar]
  2. Masson P. L., Heremans J. F., Schonne E. Lactoferrin and iron binding protein in neutrophilic leukocytes. J Exp Med 1969; 130:643–658
    [Google Scholar]
  3. Bennett R. M., Kokocinski T. Lactoferrin turnover in man. Clin Sci 1979; 57:453–460
    [Google Scholar]
  4. Metz-Boutigue M.-H., Jolles J., Mazurier J. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem 1984; 145:659–676
    [Google Scholar]
  5. Querinjean P., Masson P. L., Heremans J. F. Molecular weight, single-chain structure and amino acid composition of human lactoferrin. Eur J Biochem 1971; 20:420–425
    [Google Scholar]
  6. Harris W. R. Thermodynamics of gallium complexation by human lactoferrin. Biochemistry 1986; 25:803–808
    [Google Scholar]
  7. Masson P. L., Heremans J. F. Metal-combining properties of human lactoferrin (red milk protein). I. The involvement of bicarbonate in the reaction. Eur J Biochem 1968; 6:579–584
    [Google Scholar]
  8. Birgens H. S. The biological significance of lactoferrin in haematology. Scand J Haematol 1984; 33:225–230
    [Google Scholar]
  9. Broxmeyer H. E., Smithyman A., Eger R. R., Meyers P. A., De Sousa M. Identification of lactoferrin as the granulocyte-derived inhibitor of colony-stimulating activity production. J Exp Med 1978; 148:1052–1067
    [Google Scholar]
  10. Broxmeyer H. E., Platzer E. Lactoferrin acts on I-A and I-E/C antigen+ subpopulations of mouse peritoneal macrophages in the absence of T lymphocytes and other cell types to inhibit production of granulocyte-macrophage colony stimulatory factors in vitro. J Immunol 1984; 133:306–314
    [Google Scholar]
  11. Ambruso D. R., Johnston R. B. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. J Clin Invest 1981; 67:352–360
    [Google Scholar]
  12. Bullen J. J., Armstrong J. A. The role of lactoferrin in the bactericidal function of polymorphonuclear leucocytes. Immunology 1979; 36:781–791
    [Google Scholar]
  13. Arnold R. R., Cole M. F., McGhee J. R. A bactericidal effect for human lactoferrin. Science 1977; 197:263–265
    [Google Scholar]
  14. Oram J. D., Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta 1968; 170:351–365
    [Google Scholar]
  15. Dalmastri C., Valenti P., Visca P., Vittorioso P., Orsi N. Enhanced antimicrobial activity of lactoferrin by binding to the bacterial surface. Microbiologica 1988; 11:225–230
    [Google Scholar]
  16. Ellison R. T., Theodore G. J., LaForce F. M. Damage to outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun 1988; 56:2774–2781
    [Google Scholar]
  17. Alderete J. F., Peterson K. M., Baseman J. B. Affinities of Treponema pallidum for human lactoferrin and transferrin. Genitourin Med 1988; 64:359–363
    [Google Scholar]
  18. Lee B. C., Schryvers A. B. Specificity of the lactoferrin and transferrin receptors in Neisseria gonorrhoeae. Mol Microbiol 1988; 2:827–829
    [Google Scholar]
  19. Peterson K. M., Alderete J. F. Iron uptake and increased intra cellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. J Exp Med 1984; 160:398–410
    [Google Scholar]
  20. Schryvers A. B., Morris L. J. Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun 1988; 56:1144–1149
    [Google Scholar]
  21. Schryvers A. B. Identification of the transferrin- and lactoferrin-binding proteins in Haemophilus influenzae. J Med Microbiol 1989; 29:121–130
    [Google Scholar]
  22. Naidu A. S., Miedzobrodzki J., Musser J. M., Rosdahl V. T., Hedstrom S. A., Forsgren A. Human lactoferrin binding in clinical isolates of Staphylococcus aureus. J Med Microbiol 1991; 34:323–328
    [Google Scholar]
  23. Naidu A. S., Miedzobrodzki J., Andersson M., Nilsson L.-E., Forsgren A., Watts J. L. Bovine lactoferrin binding to six species of coagulase-negative staphylococci isolated from bovine intramammary infections. J Clin Microbiol 1990; 28:2312–2319
    [Google Scholar]
  24. Naidu A. S., Andersson M., Miedzobrodzki J., Forsgren A., Watts J. L. Bovine lactoferrin receptors in Staphylococcus aureus isolated from bovine mastitis. J Dairy Sci 1991; 74:1218–1226
    [Google Scholar]
  25. Veunto M., Vaheri A. Purification of fibronectin from human plasma by affinity chromatography under non-denaturing conditions. Biochem J 1979; 183:331–337
    [Google Scholar]
  26. Naidu A. S., Kamme C., Ljungh A., Wadstrom T. Levels of toxic shock syndrome toxin-1 production among Staphylococcus aureus strains and clinical implications. Zbl Bakt Hyg A 1989; 270:337–344
    [Google Scholar]
  27. Naidu A. S., Jimenez J., Rollof J. Crystal violet binding, cell surface properties and extracellular enzyme profiles of Staphylococcus aureus producing toxic shock syndrome toxin-1. Int J Med Microbiol 1989; 271:11–21
    [Google Scholar]
  28. Naidu A. S., Ekstrand J., Wadstrom T. Binding of Type I and Type II collagens to Staphylococcus aureus strains isolated from patients with toxic shock syndrome compared to other staphylococcal infections. FEMS Microbiol Immunol 1989; 1:219–227
    [Google Scholar]
  29. Rydén C., Rubin K., Speziale P., Höök M., Lindberg M., Wadström T. Fibronectin receptors from Staphylococcus aureus. J Biol Chem 1983; 258:3396–3401
    [Google Scholar]
  30. Nakamura R. M., Voller A., Bidwell D. E. Enzyme immunoassays: heterogeneous and homogeneous systems. In Weir D. M. (ed) Handbook of experimental immunology Oxford: Blackwell Scientific Publications; 1986; 271–27
    [Google Scholar]
  31. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 1971; 8:71–874
    [Google Scholar]
  32. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 1973; 79:237–248
    [Google Scholar]
  33. Towbin H., Staechelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350–4354
    [Google Scholar]
  34. Scatchard G. The attractions of proteins for small molecules and ions. Ann NY Acad Sci 1949; 51:660–672
    [Google Scholar]
  35. Sheagren J. N. Staphylococcus aureus: the persistent pathogen. N Engl J Med 1984; 310:1368–1373
    [Google Scholar]
  36. Lerche A., Bisgaard H., Christensen J. D., Venge P., Dahl R., Sondergaard J. Lactoferrin, myeloperoxidase, lysozyme and eosinophil cationic protein in exudate in delayed type hypersensitivity. Allergy 1988; 43:139–145
    [Google Scholar]
  37. van Snick J. L., Masson P. L., Heremans J. F. The involvement of lactoferrin in the hyposideremia of acute inflammation. J Exp Med 1974; 140:1068–1084
    [Google Scholar]
  38. Höök M., Switalski L. M., Wadstrom T., Lindberg M. Interactions of pathogenic microorganisms with fibronectin. In Mosher D. F. (ed) Fibronectin New York: Academic Press; 1989295–308
    [Google Scholar]
  39. Kronvall G., Quie P. G., Williams R. C. Quantitation of staphylococcal protein A: determination of equilibrium constant and number of protein A residues on bacteria. J Immunol 1970; 104:273–278
    [Google Scholar]
  40. Switzlski L. M., Speziale P., Höök M. Isolation and characterization of a putative collagen receptor from Staphylococcus aureus strain Cowan 1. J Biol Chem 1989; 264:21080–21086
    [Google Scholar]
  41. Kronvall G., Seal U. S., Finstad J., Williams R. C. Phylogenetic insight into evolution of mammalian Fc fragment of yG-globulin using staphylococcal protein A. J Immunol 1970; 104:140–147
    [Google Scholar]
  42. Lehrer R. I., Ganz T., Selsted M. E., Babior B. M., Cumutte J. T. Neutrophils and host defense. Ann Intern Med 1988; 109:127–142
    [Google Scholar]
  43. Forsgren A., Sjöquist J. “Protein A” from S aureus. I. Pseudo immune reaction with human γ-globulin. J Immunol 1966; 97:822–827
    [Google Scholar]
  44. Kuusela P. Fibronectin binds to Staphylococcus aureus. Nature 1978; 276:718–720
    [Google Scholar]
  45. Fuquay J. I., Loo D. T., Barnes D. W. Binding of Staphylococcus aureus by human serum spreading factor in an in-vitro assay. Infect Immun 1986; 52:714–717
    [Google Scholar]
  46. Lopes J. D., dos Reis M., Brentani R. R. Presence of laminin receptors in Staphylococcus aureus. Science 1985; 229:275–277
    [Google Scholar]
  47. Carret G., Emonard H., Fardel G., Druguet M., Herbage D., Flandrois J. P. Gelatin and collagen binding to Staphylococcus aureus strains. Ann Inst Pasteur Microbiol 1985; 136A:241–245
    [Google Scholar]
  48. Espersen F., Clemmensen I. Isolation of a fibronectin-binding protein from Staphylococcus aureus. Infect Immun 1982; 37:526–531
    [Google Scholar]
  49. Fröman G., Switalski L. M., Speziale P., Höök M. Isolation and characterization of a fibronectin receptor from Staphylococcus aureus. J Biol Chem 1987; 262:6564–6571
    [Google Scholar]
  50. Uhlén M., Guss B., Nilsson B., Gatenbeck S., Philipson L., Lindberg M. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J Biol Chem 1984; 259:1695–1702
    [Google Scholar]
  51. Signäs C., Raucci G., Jönsson K. Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus. Use of this peptide sequence in the synthesis of biologically active peptides. Proc Natl Acad Sci USA 1989; 86:699–703
    [Google Scholar]
  52. Naidu A. S., Schalén C., Flock J.-I., Nilsson I., Miedzobrodzki J., Wadström T. Serological difference in the fibronectin binding to protein-A deficient mutants of Staphylococcus aureus. In Wadstrom T., Eliasson I., Holder I., Ljungh Ȧ. (eds) Pathogenesis of wound and biomaterial-associated infections London: Springer-Verlag; 1990353–360
    [Google Scholar]
  53. Usui Y. Biochemical properties of fibrinogen binding protein (clumping factor) of the staphylococcal cell surface. Zbl Bakt Hyg A 1986; 262:287–297
    [Google Scholar]
  54. Imber M. J., Pizzo S. V. Clearance and binding of native and defucosylated lactoferrin. Biochem J 1983; 212:249–257
    [Google Scholar]
  55. Mickelson P. A., Blackman E., Sparling P. F. Ability of Neisseria gonorrhoeae, Nesseria meningitidis, and commensal Neisseria species to obtain iron from lactoferrin. Infect Immun 1982; 35:915–920
    [Google Scholar]
  56. Kalfas S., Andersson M., Edwardsson S., Forsgren A., Naidu A. S. Human lactoferrin binding to Porphyromonas gingivalis, Prevotella intermedia and Prevotella melaninogenica. Oral Microbiol Immunol 19916 in press
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-3-177
Loading
/content/journal/jmm/10.1099/00222615-36-3-177
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error