1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-1-4
1992-01-01
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/1/medmicro-36-1-4.html?itemId=/content/journal/jmm/10.1099/00222615-36-1-4&mimeType=html&fmt=ahah

References

  1. O’Grady F. Trimethoprim-sulfamethoxazole: a reappraisal. Canad Med Assoc J 1975112 Suppl 5S–7S
    [Google Scholar]
  2. Brumfitt W., Hamilton-Miller J. M. T. Co-trimoxazole or trimethoprim alone? A viewpoint on their relative place in therapy. Drugs 1982; 24:453–458
    [Google Scholar]
  3. Hamilton-Miller J. M. T. Resistance to antibacterial agents acting on antifolate metabolism. In Bryan L. E. (ed) Antimicrobial drug resistance Orlando: Academic Press; 1984173–190
    [Google Scholar]
  4. Amyes S. G. B., Towner K. J. Trimethoprim resistance; epidemiology and molecular aspects. J Med Microbiol 1990; 31:1–19
    [Google Scholar]
  5. Towner K. J. Resistance to trimethoprim among urinary tract isolates in the United Kingdom. Rev Infect Dis 1982; 4:456–460
    [Google Scholar]
  6. Goldstein F. W., Papadopoulou B., Acar J. F. The changing pattern of trimethoprim resistance in Paris, with a review of worldwide experience. Rev Infect Dis 1986; 8:725–737
    [Google Scholar]
  7. Towner K. J., Slack R. C. B. Effect of changing selection pressures on trimethoprim resistance in Enterobacteriaceae. Eur J Clin Microbiol 1986; 5:502–506
    [Google Scholar]
  8. Radstrӧm P., Swedberg G. RSF1010 and a conjugative plasmid contain sulll, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Anti-microb Agents Chemother 1988; 32:1684–1692
    [Google Scholar]
  9. Sundstrӧm L., Radstrӧm P., Swedberg G., Skӧld O. Site-specific recombination promotes linkage between trimethoprim- and sulfonamide-resistance genes. Sequence characterization of dhfrV abd sull and a recombination active locus of Tn27. Mol Gen Genet 1988; 213:191–201
    [Google Scholar]
  10. Swedberg G., Skӧld O. Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial resistance to sulfonamides. J Bacteriol 1980; 142:1–7
    [Google Scholar]
  11. Pinney R. J., Smith J. T. Joint trimethoprim and sulphamethox-azole resistance in bacteria infected with R factors. J Med Microbiol 1973; 6:13–19
    [Google Scholar]
  12. Amyes S. G. B., Smith J. T. Thymineless mutants and their resistance to trimethoprim. J Antimicrob Chemother 1975; 1:85–89
    [Google Scholar]
  13. Grey D., Hamilton-Miller J. M. T., Brumfitt W. Incidence and mechanisms of resistance to trimethoprim in clinically isolated gram-negative bacteria. Chemotherapy 1979; 25:147–156
    [Google Scholar]
  14. Gutmann L., Williamson R., Moreau N. Cross-resistance to nalidixic acid, trimethoprim, and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter and Serratia. J Infect Dis 1985; 151:501–507
    [Google Scholar]
  15. Amyes S. G. B., Towner K. J., Carter G. I., Thomson C. J., Young H.-K. The type VII dihydrofolate reductase: a novel plasmid-encoded trimethoprim-resistant enzyme from gram-negative bacteria isolated in Britain. J Antimicrob Chemother 1989; 24:111–119
    [Google Scholar]
  16. Sundstrӧm L. The genes of trimethoprim resistance and their recominational dissemination. Acta Pharm Nord 1989; 1:375
    [Google Scholar]
  17. Towner K. J., Carter G. I., Young H.-K., Amyes S. G. B. Detection of novel trimethoprim resistance determinants in the United Kingdom using biotin-labelled DNA probes. Epidemiol Infect 1991; 106:63–70
    [Google Scholar]
  18. Thomson C. J., Towner K. J., Young H.-K., Amyes S. G. B. Identification and cloning of the type IIIA plasmid-encoded dihydrofolate reductase gene from trimethoprim-resistant gram-negative bacteria isolated in Britain. J Med Microbiol 1990; 31:213–218
    [Google Scholar]
  19. Towner K. J., Carter G. I. Cloning of the type VII trimethoprim-resistant dihydrofolate reductase and identification of a specific DNA probe. FEMS Microbiol Lett 1990; 70:1922
    [Google Scholar]
  20. Thomas C. J., Barg N., Amyes S. G. B. N-terminal amino acid sequence of the novel type IIIB trimethoprim-resistant plasmid-encoded dihydrofolate reductase from Shigella sonnei. J Gen Microbiol 1990; 136:673–677
    [Google Scholar]
  21. Thomson C. J., Young H.-K., Amyes S. G. B. N-terminal amino-acid sequence and subunit structure of the type IV trimethoprim-resistant plasmid-encoded dihydrofolate reductase. J Med Microbiol 1990; 32:153–158
    [Google Scholar]
  22. Wylie B. A., Koornhof H. J. Nucleotide sequence of the type VI dihydrofolate reductase encoded by pUK672. J Med Microbiol 1991; 35:214–218
    [Google Scholar]
  23. Abrahams E. P., Chain E. An enzyme from Bacteria able to destroy penicillin. Nature 1940; 146:837
    [Google Scholar]
  24. Neu H. C. Contribution of beta-lactamases to bacterial resistance and mechanisms to inhibit beta-lactamases. Am J Med 1985; 79: Suppl 5B2–12
    [Google Scholar]
  25. Anderson E. S., Datta N. Resistance to penicillins and its transfer in Enterobacteriaceae. Lancet 1985; 1:407–409
    [Google Scholar]
  26. Richmond M. H., Sykes R. B. The β-lactamasesofgram-negative bacteria and their possible physiological role. In Rose A. H., Tempest D. W. (eds) Advances in microbial physiology no. 9 London: Academic Press; 196731–88
    [Google Scholar]
  27. Ambler R. P. The structure β-lactamases. Phil Trans Roy Soc Lond 1980; 289:321–331
    [Google Scholar]
  28. Jaurin B., Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β -lactamases of the penicillinase type. Proc Natl Acad Sci USA 1981; 78:4807–4901
    [Google Scholar]
  29. Huovinen P., Huovinen S., Jacoby G. A. Sequence of PSE-2 β-lactamase. Antimicrob Agents Chemother 1988; 32:134–136
    [Google Scholar]
  30. Dale J. W., Godwin D., Mossakowska D., Stephenson P., Wall S. Sequence of the OXA2 β-lactamase: comparison with other penicillin-reactive enzymes. FEBS Lett 1985; 191:39–44
    [Google Scholar]
  31. Bicknell R., Emanuel E. L., Gagnon J., Waley S. G. The production and molecular properties of the zinc β-lactamase of Pseudomonas maltophilia IID 1275. Biochem J 1985; 229:791–797
    [Google Scholar]
  32. Huletsky A., Couture F., Levesque R. C. Nucleotide sequence and phylogeny of SHV-2 β-lactamase. Antimicrob Agents Chemother 1990; 34:1725–1732
    [Google Scholar]
  33. Sougakoff W., Goussard S., Courvalin P. The TEM-3 β-lactamase, which hydrolyzes broad-spectrum cephalosporins, is derived from the TEM-2 penicillinase by two amino acid substitutions. FEMS Microbiol Lett 1988; 56:343–348
    [Google Scholar]
  34. Matthew M., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of β-lactamases. J Gen Microbiol 1975; 88:169–178
    [Google Scholar]
  35. Roy C., Foz A., Segura C., Tirado M., Fuster C., Reig R. Plasmid-determined β-lactamases identified in a group of 204 ampicillin-resistant Enterobacteriaceae. J Antimicrob Chemother 1983; 12:507–510
    [Google Scholar]
  36. Simpson I. N., Knothe H., Plested S. J., Harper P. B. Qualitative and quantitative aspects of β-lactamase production as mechanism of β-lactam resistance in a survey of clinical isolates from faecal samples. J Antimicrob Chemother 1986; 17:725–737
    [Google Scholar]
  37. Reid A. J., Simpson I. N., Harper P. B., Amyes S. G. B. Cephaloridine resistance in gram-negative bacteria isolated in Scotland. J Pharm Pharmacol 1988; 40:571–573
    [Google Scholar]
  38. Nandivada L. S., Amyes S. G. B. Plasmid-mediated /J-lactam resistance in pathogenic gram-negative bacteria isolated in South India. J Antimicrob Chemother 1990; 26:279–290
    [Google Scholar]
  39. Amyes S. G. B. The success of plasmid-encoded resistance genes in clinical bacteria: an examination of plasmid-mediated ampicillin and trimethoprim resistance genes and their resistance mechanisms. J Med Microbiol 1990; 28:73–83
    [Google Scholar]
  40. Payne D. J., Marriott M. S., Amyes S. G. B. Characterisation of a unique ceftazidime-hydrolysing β-lactamase, TEM-E2. J Med Microbiol 1990; 32:131–134
    [Google Scholar]
  41. Kliebe C., Nies B. A., Meyer J. F., Tolxdorff-Neutzling R. M., Wiedemann B. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother 1985; 28:302–307
    [Google Scholar]
  42. Petit A., Gerbaud G., Sirot D., Courvalin P., Sirot J. Molecular epidemiology of TEM-3 (CTX-1) β -lactamase. Antimicrob Agents Chemother 1990; 34:219–224
    [Google Scholar]
  43. Rice L. B., Willey S. H., Papanicolaou G. A. Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamase at a Massachusetts chronic-care facility. Antimicrob Agents Chemother 1990; 34:2193–2199
    [Google Scholar]
  44. Payne D. J., Amyes S. G. B. Transferable resistance to extended-spectrum /3-lactams: a major threat or a minor inconvenience?. J Antimicrob Chemother 1991; 27:255–261
    [Google Scholar]
  45. Woodford N., Payne D. J., Johnson A. P. Transferable cephalosporin resistance not inhibited by clavulanate in Escherichia coli. Lancet 1990; 336:253
    [Google Scholar]
  46. Bobrowski M. M., Matthew M., Barth P. T. Plasmid-determined β-lactamase indistinguishable from chromosomal β-lactamase of Escherichia coli. J Bacteriol 1976; 125:149–157
    [Google Scholar]
  47. Gutmann L., Kitzis M. D., Billot-Klein D. Plasmid-mediated β-lactamase (TEM-7) involved in resistance to ceftazidime and aztreonam. Rev Infect Dis 1988; 10:860–866
    [Google Scholar]
  48. Suttcliffe J. A., Gootz T. D., Barrett J. F. Biochemical characteristics and physiological significance of major DNA topoisomerases. Antimicrob Agents Chemother 1989; 33:2027–2033
    [Google Scholar]
  49. Fisher L. M. DNA supercoiling and gene expression. Nature 1984; 307:686–687
    [Google Scholar]
  50. Dorman C. J., Bhriain N. N., Higgins C. F. DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature 1990; 344:789–792
    [Google Scholar]
  51. Courvalin P. Plasmis-mediated 4-quinolone resistance: a real or apparent absence?. Antimicrob Agents Chemother 1990; 34:681–684
    [Google Scholar]
  52. Lewin C. S., Allen R. A., Amyes S. G. B. Potential mechanisms of resistance to the modem fluorinated 4-quinolones. J Med Microbiol 1990; 31:153–161
    [Google Scholar]
  53. Ubukata K., Itoh-Yamashita N., Konno M. Cloning and expression of the nor A gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1989; 33:1535–1539
    [Google Scholar]
  54. Yoshida H., Bogaki M., Nakamura S., Ubukata K. Nucleotide sequence of the norA gene of Staphylococcus aureus conferring quinolone resistance. Abstracts of the 3rd International Symposium on New Quinolones No. 160 1990202
    [Google Scholar]
  55. Nakamura S., Nakamura M., Kojima T., Yoshida H. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrob Agents Chemother 1989; 33:254–255
    [Google Scholar]
  56. Yoshida H., Nakamura M., Bogaki M., Nakamura S. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990; 34:1273–1275
    [Google Scholar]
  57. Robillard N. J. Broad-host-range gyrase A gene probe. Antimicrob Agents Chemother 1990; 34:1889–1894
    [Google Scholar]
  58. Hooper D. C., Wolfson J. S., Souza K. S., Tung C., McHugh G. L., Swartz M. N. Genetic and biochemical characterization of norflexocin resistance in Escherichia coli. Antimicrob Agents Chemother 1986; 29:639–644
    [Google Scholar]
  59. Aoyama H., Sato K., Kato T., Hirai K., Mitsuhashi S. Norfloxacin resistance in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother 1987; 31:1640–1641
    [Google Scholar]
  60. Hirai K., Suzue S., Irikura T., Iyobe S., Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1987; 31:582–586
    [Google Scholar]
  61. Inoue Y., Sato K., Fujii T. Some properties of subunits of DNA gyrase from Pseudomonas aeruginosa PAOl and its nalidixic acid-resistant mutant. J Bacteriol 1987; 169:2322–2325
    [Google Scholar]
  62. Robillard N. J., Scarpa A. L. Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 1988; 32:535–539
    [Google Scholar]
  63. Setlow J. K., Cabrera-Juarez E., Albritton W. L., Spikes D., Mutschler A. Mutations affecting gyrase in Haemophilus influenzae. J Bacteriol 1985; 164:525–534
    [Google Scholar]
  64. Aoyama H., Sato K., Fujii T., Fulimaki K., Inoue M., Mitsuhashi S. Purification of Citrobacter freundii DNA gyrase and inhibition by quinolones. Antimicrob Agents Chemother 1988; 32:104–109
    [Google Scholar]
  65. Fujimaki K., Fujii T., Aoyama H. Quinolone resistance in clinical isolates of Serratia marcescens. Antimicrob Agents Chemother 1989; 33:785–787
    [Google Scholar]
  66. Yoshida H., Kojima T., Yamagishi J., Nakamura S. Quinolone-resistant mutations in gyrA gene of Escherichia coli. Mol Gen Genet 1988; 211:1–7
    [Google Scholar]
  67. Dimri G. P., Das H. K. Cloning and sequence analysis of gyrA gene of Klebsiella pneumoniae. Nucleic Acids Res 1990; 18:151–156
    [Google Scholar]
  68. Hopewell R., Oram M., Briesewitz R., Fisher L. M. DNA cloning and organization of the Staphylococcus aureus gyrA and gyrB genes: close homology among gyrase proteins and implications for 4-quinolones action and resistance. J Bacteriol 1990; 172:3481–3484
    [Google Scholar]
  69. Yoshida H., Bogaki M., Nakamura S. Quinolone resistance determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 1990; 34:1271–1272
    [Google Scholar]
  70. Cullen M. E., Wyke A. W., Kuroda R., Fisher L. M. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to the 4-quinolones. Antimicrob Agents Chemother 1989; 33:886–894
    [Google Scholar]
  71. Sreedharan S., Oram M., Jensen B., Petersen L. R., Fisher L. M. DNA gyrA mutations in ciprofloxacin strains of Staphylococcus aureus: close similarity with quinolone resistance mutations in Esherichia coli. J Bacteriol 1990; 172:7260–7262
    [Google Scholar]
  72. Yamagishi J., Yoshida H., Yamayoshi M., Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol Gen Genet 1986; 204:367–373
    [Google Scholar]
  73. Hirai K., Aoyama H., Irikura T., Iyobe S., Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 1986; 29:535–538
    [Google Scholar]
  74. Chapman J. S., Georgopapadakou N. H. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother 1988; 32:438–442
    [Google Scholar]
  75. Cohen S. P., Hooper D. C., Wolfson J. S., Souza K. S., McMurry L. M., Levy S. B. Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrob Agents Chemother 1988; 32:1187–1191
    [Google Scholar]
  76. Chamberland S., Bayer A. S., Schollaardt T., Wong S. A., Bryan L. E. Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in vitro and in vivo during experimental endocarditis. Antimicrob Agents Chemother 1989; 33:624–634
    [Google Scholar]
  77. Piddock L. J. V., Wise R. Mechanisms of resistance to quinolones and clinical perspectives. J Antimicrob Chemother 1989; 23:475–483
    [Google Scholar]
  78. Hooper D. C., Wolfson J. S., Souza K. S., Ng E. Y., McHugh G. L., Swartz M. N. Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant resistance loci decreasing norfloxacin accumulation. Antimicrob Agents Chemother 1989; 33:283–290
    [Google Scholar]
  79. Daikos G. L., Lolans V. T., Jackson G. G. Alteractions in outer membrane proteins of Pseudomonas aeruginosa associated with selective resistance to quinolones. Antimicrob Agents Chemother 1988; 32:785–787
    [Google Scholar]
  80. Fukuda H., Hosaka M., Hirai K., Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 1990; 34:1757–1761
    [Google Scholar]
  81. Kresken M., Wiedemann B. Development of resistance to nalidixic acid and the fluoroquinolones after the introduction of norfloxacin and ofloxacin. Antimicrob Agents Chemother 1988; 32:1285–1288
    [Google Scholar]
  82. Grimm H. Aktuelle erregerempfindlichkrit gegenuber cipro floxacin in klinik und praxis-vergleich mit anderen wirkstoffen. Fortschritte der Antimikrobiellen und Antineo-plastischen Chemkotherapie 198933–47
    [Google Scholar]
  83. Smith S. M., Eng R. H. K., Bais P., Fan-Havard P., Tecson-Tumang F. Epidemiology of ciprofloxacin resistance among patients with methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 1990; 26:567–572
    [Google Scholar]
  84. Kato N., Miyauchi M., Muto Y., Watanabe K., Ueno K. Emergence of fluoroquinolone resistance in Bacteroides fragilis accompanied by resistance to β-lactam antibiotics. Antimicrob Agents Chemother 1988; 32:1437–1438
    [Google Scholar]
  85. Lewis D. A., Hawkey P. M., Watts J. A. Infection with netilmicin resistant Serratia marcescens in a special care baby unit. Br Med J 1983; 287:1701–1705
    [Google Scholar]
  86. Hancock R. E. W., Raffle V. J., Nicas T. I. Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1981; 19:777–785
    [Google Scholar]
  87. Hancock R. E. W. Aminoglycoside uptake and mode of action–with special reference to streptomycin and gentamicin. I. Antagonists and mutants. J Antimicrob Chemother 1981; 8:249–276
    [Google Scholar]
  88. MacArthur R. D., Lolans V., Zar F. A., Jackson G. G. Biphasic, concentration-dependent and rate-limited, concentration-independent bacterial killing by an aminoglycoside antibiotic. J Infect Dis 1984; 150:778–779
    [Google Scholar]
  89. Bryan L. E. Cytoplasmic membrane transport and antimicrobial resistance.. In Bryan L. E. (ed) Microbial resistance to drugs Berlin, Springer Verlag: 198935–57
    [Google Scholar]
  90. Schlessinger D. Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and resistant cultures. Clin Microbiol Rev 1988; 1:54–59
    [Google Scholar]
  91. Dickie P., Bryan L. E., Pickard M. A. Effect of enzymic adenylation on dihydrostreptomycin accumulation in Escherichia coli carrying an R-factor: model explaining aminoglycoside resistance by inactivating mechanisms. Antimicrob Agents Chemother 1978; 14:569–580
    [Google Scholar]
  92. Bryan L. E. Aminoglycoside resistance. In Bryan L. E. (ed) Antimicrobial drug resistance Orlando: Academic Press; 1984241–277
    [Google Scholar]
  93. Gilleland H. E., Gibson J. A., Champlin F. R. Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J Med Microbiol 1989; 29:41–50
    [Google Scholar]
  94. D’Aoust J.-Y., Daley E., Crozier M., Sewell A. M. Pet turtles: a continuing international threat to public health. Am J Epidemiol 1990; 132:233–238
    [Google Scholar]
  95. Lovering A. M., Bywater M. J., Holt H. A., Champion H. M., Reeves D. S. Resistance of bacterial pathogens to four aminoglycosides and six other antibacterials and prevalence of aminoglycoside modifying enzymes in 20 UK centres. J Antimicrob Chemother 1988; 22:823–839
    [Google Scholar]
  96. Dornbusch K., Miller G. H., Hare R. S., Shaw K. J. and the ESGAR Study Group. Resistance to aminoglycoside antibiotics in gram-negative bacilli and staphylococci isolated from blood. Report from a European collaborative study. J Antimicrob Chemother 1990; 26:131–144
    [Google Scholar]
  97. European Study Group on Antibiotic Resistance In-vitro susceptibility to aminoglycoside antibiotics in blood and urine isolates consecutively collected in twenty-nine European Laboratories. Eur J Clin Microbiol 1987; 6:378–385
    [Google Scholar]
  98. Infectious Diseases Society of America Report from the Antimicrobial Agents Committee. J Infect Dis 1987; 156:700–705
    [Google Scholar]
  99. Phillips I., King A., Shannon K. Prevalence and mechanisms of aminoglycoside resistance: a 10-year study. Am J Med 1986; 80: Suppl 6B48–55
    [Google Scholar]
  100. Bengtsson S., Bemander S., Brorson J. E. In-vitro amino glycoside resistance of Gram-negative bacilli and staphylococci isolated from blood in Sweden 1980-1984. Scand J Infect Dis 1986257–263
    [Google Scholar]
  101. Shimizu K., Kumada T., Hsieh W.-C. Comparison of aminoglycoside resistance patterns in Japan, Formosa, and Korea, Chile, and the United States. Antimicrob Agents Chemother 1985; 28:282–288
    [Google Scholar]
  102. Huovinen P., Gronroos P., Herva E. Aminoglycoside resistance among blood culture isolates. J Clin Microbiol 1984; 20:65–69
    [Google Scholar]
  103. Moaz A., Shannon K., Phillips I. Mechanisms of gentamicin resistance in gram–negative bacilli in Riyadh, Kingdom of Saudi Arabia. J Antimicrob Chemother 1989; 24:689–698
    [Google Scholar]
  104. Van de Klundert J. A. M., Vliegenthart J. S., Van Doom E., Bongaerts G. P. A., Molendijk L., Mouton R. P. A simple method for the identification of aminoglycoside-modifying enzymes. J Antimicrob Chemother 1984; 14:339–348
    [Google Scholar]
  105. Reynolds P. E. Inhibitors of bacterial cell wall synthesis. In Greenwood D., O’Grady F. (eds) The scientific basis of Antimicrobial chemotherapy Symp Soc Gen Microbiol 1985; 38:13–40
    [Google Scholar]
  106. Perkins H. R. Vancomycin and related antibiotics. Pharmacol Ther 1982; 16:191–197
    [Google Scholar]
  107. Barna J. C., Williams D. H. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 1984; 38:339–357
    [Google Scholar]
  108. Jeffs P. W., Nisbet L. J. Glycopeptide antibiotics: a comprehensive approach to discovery, isolation, and structure determination. In Actor P., Daneo-Moore L., Higgins M. L., Salton M. R. J., Shockman G. D. (eds) Antibiotic inhibition of bacterial cell surface assembly and function Washington, D. C: American Society for Microbiology; 1988509–530
    [Google Scholar]
  109. Reynolds P. E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 1989; 8:943–950
    [Google Scholar]
  110. Orberg P. K., Sandine W. E. Common occurrence of plasmic DNA and vancomycin resistance in Leuconostoc spp. Appl Environ Microbiol 1984; 48:1129–1133
    [Google Scholar]
  111. Uttley A. H. C., George R. C., Naidoo J. High-level vancomycin-resistant enterococci causing hospital infections. Epidem Inf 1989; 103:173–181
    [Google Scholar]
  112. Shlaes D. M., Bouvet A., Devine C., Shlaes J. H., Al-Obeid S., Williamson R. Inducible, transferable resistance to vancomycin in Enterococcus faecalis A256. Antimicrob Agents Chemother 1989; 33:198–203
    [Google Scholar]
  113. Williamson R., Al-Obeid S., Shlaes J. H., Goldstein F. W., Shlaes D. M. Inducible resistance to vancomycin in Enterococcus faecium D366. J Infect Dis 1989; 159:1095–1104
    [Google Scholar]
  114. Leclercq R., Derlot E., Weber M., Duval J., Courvalin P. Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob Agents Chemother 1989; 33:10–15
    [Google Scholar]
  115. Dutka-Malen S., Leclercq R., Coutant V., Duval J., Courvalin P. Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria. Antimicrob Agents Chemother 1990; 34:1875–1879
    [Google Scholar]
  116. Johnson A. P., Uttley A. H., Woodford N., George R. C. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev 1990; 3:280–291
    [Google Scholar]
  117. Brisson-Noel A., Dutka-Malen S., Molinas C., Leclercq R., Courvalin P. Cloning and heterospecific expression of the resistance determinant vanA encoding high-level resistance to glycopeptides in Enterococcus faecium BM4147. Antimicrob Agents Chemother 1990; 34:924–927
    [Google Scholar]
  118. Dutka-Malen S., Molinas C., Arthur M., Courvalin P. The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Mol Gen Genet 1990; 224:264–372
    [Google Scholar]
  119. Al-Obeid S., Gutmann L., Shlaes D. M., Williamson R., Collatz E. Comparison of vancomycin-inducible proteins from four strains of Enterococci. FEMS Microbiol Lett 1990; 70:101–106
    [Google Scholar]
  120. Nicas T. I., Wu C. Y. E., Hobbs J. N., Preston D. A., Allen N. E. Characterization of vancomycin resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother 1989; 33:1121–1124
    [Google Scholar]
  121. Courvalin P. Resistance of enterococci to glycopeptides. Antimicrob Agents Chemother 1990; 34:2291–2296
    [Google Scholar]
  122. Nicas T. I., Cole C. T., Preston D. A., Schabel A. A., Nagarajan R. Activity of glycopeptides against vancomycin-resistant gram-positive bacteria. Antimicrob Agents Chemother 1989; 33:1477–1481
    [Google Scholar]
  123. Al-Obeid S., Collatz E., Gutmann L. Mechanism of resistance to vancomycin in Enterococcus faecium D366 and Enterococcus faecalis A256. Antimicrob Agents Chemother 1990; 34:252–256
    [Google Scholar]
  124. Moore E. P., Speller D. C. E. In-vitro teicoplanin-resistance in coagulase-negative staphylococci from patients with endocarditis from a cardiac surgery unit. J Antimicrob Chemother 1988; 21:417–424
    [Google Scholar]
  125. Wheat P. F., Magee J. T., Harris D. M., Spencer R. C. Analysis of bacterial species and antibiotic susceptibility patterns using a microcomputer: an outline of one year’s experience. Med Lab Sci 1985; 42:139–147
    [Google Scholar]
  126. Gaunt P. N., Phillips I. Computers and hospital infection. J Hosp Infect 1987; 9:106–109
    [Google Scholar]
  127. Phillips I., King A., Gransden W. R., Eykyn S. J. The antibiotic sensitivity of bacteria isolated from the blood of patients in St Thomas’ Hospital, 1969–1988. J Antimicrob Chemother 1990; 25: Suppl C 59–80
    [Google Scholar]
  128. Spencer R. C., Wheat P. F., Harris D. M. Microcomputer surveillance as an aid to rational antibiotic therapy for urinary tract infection (UTI) in general practice. Health Trends 1986; 4:84–86
    [Google Scholar]
  129. Edwards R., Greenwood D. Antibiotic resistance in enterococci in Nottingham. J Antimicrob Chemother 1990; 26:155–156
    [Google Scholar]
  130. Powell M., Koutsia-Carouzou C., Voutsinas D., Seymour A., Williams J. D. Resistance of clinical isolates of Haemophilus influenzae in United Kingdom 1986. Br Med J 1987; 295:176–179
    [Google Scholar]
  131. Lovering A. M., Bywater M. J., Holt H. A., Champion H. M., Reeves D. S. Resistance of bacterial pathogens to four aminoglycosides and six other antibacterials and prevalence of aminoglycoside modifying enzymes, in 20 UK centres. J Antimicrob Chemother 1988; 22:823–839
    [Google Scholar]
  132. George R. C., Ball L. C., Norbury P. B. Susceptibility to ciprofloxacin of nosocomial gram-negative bacteria and staphylococci isolated in the UK. J Antimicrob Chemother 1990; 26: Suppl F 145–156
    [Google Scholar]
  133. Ward L. R., Threlfall E. J., Rowe B. Multiple drug resistance in salmonellae in England and Wales: a comparison between 1981 and 1988. J Clin Pathol 1990; 43:563–566
    [Google Scholar]
  134. Lorian V., Atkinson B. Bacterial resistance to antibiotics in the United States. Ten million strains, nine species and sixteen antibiotics. Drugs Exp Clin Res 1987; 13:457–477
    [Google Scholar]
  135. Spencer R. C., Wheat P. F., Magee J. T., Brown E. H. A three year survey of clinical isolates in the United Kingdom and their Antimicrobial susceptibility. J Antimicrob Chemother 1990; 26:435–446
    [Google Scholar]
  136. Magee J. T. Microbe Base. London: Academic Press; 1986
    [Google Scholar]
  137. Williams R. J., Lindridge M. A., Said A. A., Livermore D. M., Williams J. D. National survey of antibiotic resistance in Pseudomonas aeruginosa. J Antimicrob Chemother 1984; 14:9–16
    [Google Scholar]
  138. Echeverria P., Verhaert L., Ulyangco C. V. Anti–microbial resistance and enterotoxin production among isolates of Escherichia coli in the Far East. Lancet 1978; 2:589–592
    [Google Scholar]
  139. Wachsmuth I. K., Falkow S., Ryder R. W. Plasmid-mediated properties of a heat-stable enterotoxin-producing Escherichia coli associated with infantile diarrhea. Infect Immun 1976; 14:403–407
    [Google Scholar]
  140. Smith H. W., Linggood M. A. Transfer factors in Escherichia coli with particular regard to their incidence in enteropathogenic strains. J Gen Microbiol 1970; 62:287–299
    [Google Scholar]
  141. Laporta M. Z., Silva M. L. M., Scaletsky I. C. A., Trabulsi L. R. Plasmids coding for drug resistance and localized adherence to HrLa cells in enteropathogenic Escherichia coli 055:H and 055:H6. Infect Immun 1986; 51:715–717
    [Google Scholar]
  142. Clausen C. R., Christie D. L. Chronic diarrhea in infants caused by adherent enteropathogenic Escherichia coli. J Pediatr 1982; 100:358–361
    [Google Scholar]
  143. Dorman C. J., Chatfield S., Higgins C. F., Hayward C., Dougan G. Characterization of porin and OmpR mutants of a virulent strain of Salmonella typhimurium: OmpR mutants are attenuated in vivo. Infect Immun 1959; 57:2136–2140
    [Google Scholar]
  144. Curtis R., Kelly S. M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are virulent and immunogenic. Infect Immun 1987; 55:3035–2043
    [Google Scholar]
  145. Bemadini M. L., Fontaine A., Sansonetti P. J. The two-component regulatory system ompR-envZ controls the virulence of Shigella flexneri. J Bacterial 1990; 172:6274–6281
    [Google Scholar]
  146. Bryan L. E., Godfrey A. J., Schollardt T. Virulence of Pseudomonas aeruginosa strains with mechanisms of microbial persistence for β-lactam and aminoglycoside antibiotics in a mouse infection model. Can J Microbio 1985; 31:377–380
    [Google Scholar]
  147. Ravizzola G., Pirali F., Paolucci A. Reduced virulence in ciprofloxacin-resistant variants of Pseudomonas aeruginosa strains. J Antimicrob Chemother 1987; 20:825–829
    [Google Scholar]
  148. Marples R. R., Cooke E. M. Current Problems with methicillin-resistant Staphylococcus aureus. J Hosp Infect 1988; 11:381–392
    [Google Scholar]
  149. Cookson B. D., Phillips I. Epidemic methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 1988; 21: Suppl C 57–65
    [Google Scholar]
  150. Lacey R. W., Barr K. W., Barr V. E., Inglis T. J. Properties of methicillin-resistant Staphylococcus aureus colonizing patients in a burns unit. J Hosp Infect 1986; 7:137–148
    [Google Scholar]
  151. Roberts J. I., Gaston M. A. Protein A and coagulase expression in epidemic and non-epidemic Staphylococcus aureus. J Clin Pathol 1987; 40:837–840
    [Google Scholar]
  152. Jordans J. Z., Duckworth G. J., Williams R. J. Production of “virulence factors” by “epidemic” methicillin-resistant Staphylococcus aureus in vitro. J Med Microbiol 1989; 30:245–252
    [Google Scholar]
  153. Baird D. R., Lennie S., Gemmell C. G. Comparison of the susceptibility of methicillin-sensitive (MS) and methicillin-resistant (MR) Staphylococcus aureus to opsonophagocytosis. Abstract no 164. 6th International Symposium on Infections and the Immunocompromised Host 1990
    [Google Scholar]
  154. Piddock L. J. V., Wise R. Induction of the SOS response in Escherichia coli by 4-quinolone Antimicrobial agents. FEMS Microbiol Lett 1987; 41:289–294
    [Google Scholar]
  155. Limb D. I., Dabbs D. J. W., Spencer R. C. In-vitro selection of bacteria resistant to the 4-quinolone agents. J Antimicrob Chemother 1987; 19:65–71
    [Google Scholar]
  156. Gemmell C. G., Felmingham D. New techniques for assessing pathogenicity of quinolone-resistant bacteria. J Antimicrob Chemother 1990; 26: Suppl F 157–163
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-1-4
Loading
/content/journal/jmm/10.1099/00222615-36-1-4
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error