1887

Abstract

Summary

In this study the ability of strains of serotype 1 to agglutinate mammalian erythrocytes is attributed to the polysaccharide fraction of bacterial-cell lipopolysaccharide (LPS). LPS obtained from a rough, mutant strain of serotype 1 lacking the O-antigen polysaccharide side-chain, did not agglutinate erythrocytes, clearly demonstrating a link between O-antigen polysaccharides and haemagglutinating activity (HA). Strains of serotype 1 adhered well to cultured Henle Intestinal 407 cells, whereas rough strains adhered poorly. Pre-treatment of bacteria with LPS-specific antisera inhibited both HA and binding to cultured human-intestinal cells. The contribution of the polysaccharide side-chain and its associated HA–which appear to facilitate binding to cultured cells–to bacterial attachment to colonocytes and to the pathogenesis of shigellosis needs to be confirmed in animal studies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-34-5-259
1991-05-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/34/5/medmicro-34-5-259.html?itemId=/content/journal/jmm/10.1099/00222615-34-5-259&mimeType=html&fmt=ahah

References

  1. Binns M. M. Molecular genetics of virulence in Shigella. Microbiol Sci 1985; 2:275–278
    [Google Scholar]
  2. Lindberg A. A., Haeggman S., Karlsson K., Cam P. D., Trach D. D. The humoral antibody response to Shigella dysenteriae type 1 infection, as determined by ELISA. Bull WHO 1984; 62:597–606
    [Google Scholar]
  3. Levine M. M., Kaper J. B., Black R. E., Clements M. L. New knowledge on pathogenesis of bacterial enteric infections as applied to vaccine development. Microbiol Rev 1983; 47:510–550
    [Google Scholar]
  4. Beachey E. H. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. J Infect Dis 1981; 143:325–345
    [Google Scholar]
  5. Chan R., Acres S. D., Costerton J. W. Morphological examination of cell surface structures of enterotoxigenic strains of Escherichia coli. Can J Microbiol 1984; 30:451–460
    [Google Scholar]
  6. McSweegan E., Walker R. I. Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates. Infect Immun 1986; 53:141–148
    [Google Scholar]
  7. Izhar M., Nuchamowitz Y., Mirelman D. Adherence of Shigella flexneri to guinea pig intestinal cells is mediated by a mucosal adhesin. Infect Immun 1982; 35:1110–1118
    [Google Scholar]
  8. Pal T., Hale T. L. Plasmid-associated adherence of Shigella flexneri in a HeLa cell model. Infect Immun 1989; 57:2580–2582
    [Google Scholar]
  9. Qadri F., Haq S., Ciznar I. Hemagglutinating properties of Shigella dysenteriae type 1 and other Shigella species. Infect Immun 1989; 57:2909–2911
    [Google Scholar]
  10. Haider K., Azad A. K., Qadri F., Nahar S., Ciznar I. Role of plasmids in virulence-associated attributes and in O-antigen expression in Shigella dysenteriae type 1 strains. J Med Microbiol 1989; 33:1–9
    [Google Scholar]
  11. Sereny B. Experimental Shigella keratoconjunctivitis. Acta Microbiol Acad Sci Hung 1955; 2:293–296
    [Google Scholar]
  12. Qadri F., Hossain S. A. Ciznar I et al., Congo red binding and salt aggregation as indicators of virulence in Shigella species. J Clin Microbiol 1988; 26:1343–1348
    [Google Scholar]
  13. Goldhar J., Penny R., Golecki J. R., Hoschutzky H., Jann B., Jann K. Nonfimbrial, mannose-resistant adhesins from uropath-ogenic Escherichia coli 083:K1:H4 and 014:K?:H11. Infect Immun 1987; 55:1837–1842
    [Google Scholar]
  14. Salit I. E., Gotschlich E. C. Hemagglutination by purified type 1 Escherichia coli pili. J Exp Med 1977; 146:1169–1181
    [Google Scholar]
  15. Johnston K. H., Gotschlich E. C. Isolation and characterization of the outer membrane of Neisseria gonorrhoeae. J Bacteriol 1974; 119:250–257
    [Google Scholar]
  16. Oaks E. V., Hale T. L., Formal S. B. Serum immune response to Shigella protein antigens in Rhesus monkeys and humans infected with Shigella spp. Infect Immun 1986; 53:57–63
    [Google Scholar]
  17. Westphal O., Jann K. Bacterial lipopolysaccharides: Extraction with phenol-water and further applications of the procedure. In Whistler R. L. (ed) Methods in carbohydrate chemistry vol 5 New York: Academic Press; 196583–91
    [Google Scholar]
  18. Moll A., Kusecek B. Pluschke G et al., A reexamination of the Ol lipopolysaccharide antigen group of Escherichia coli. Infect Immun 1986; 53:257–263
    [Google Scholar]
  19. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956; 28:350–356
    [Google Scholar]
  20. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254
    [Google Scholar]
  21. Weissbach A., Hurwitz J. The formation of 2-keto-3-deoxyhep-tonic acid in extracts of Escherichia coli B. J Biol Chem 1959; 234:705–709
    [Google Scholar]
  22. Piotrowicz B. I., Edlin S. E., MaCartney A. C. A sensitive chromogenic limulus amoebocyte lysate micro-assay for detection of endotoxin in human plasma and in water. Zentralbl Bakteriol Mikrobial Hyg 1985a; 260:108–112
    [Google Scholar]
  23. Svennerholm L. Quantative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 1957; 24:604–611
    [Google Scholar]
  24. Weeke B. Crossed immunoelectrophoresis. In Axelsen N. H., Kroll J., Weeke B. (eds) A manual of quantitative immunoelectrophoresis Oslo: Universitetsoforlaget; 197347–56
    [Google Scholar]
  25. Ouchterlony O Diffusion-in-gel methods for immunological analysis (II). Prog Allergy 1962; VI:30–154
    [Google Scholar]
  26. Mroczenski-Wildey MJ Di, Fabio JL, , Cabello F. C. Invasion and lysis of HeLa cell monolayers by Salmonella typhi: the role of lipopolysaccharide. Microb Pathog 1989; 6:143–152
    [Google Scholar]
  27. Cohen P. S., Rossoll R., Cabelli V. J., Yang S.-L., Laux D. C. Relationship between the mouse colonizing ability of a human fecal Escherichia coli strain and its ability to bind a specific mouse colonic mucous gel protein. Infect Immun 1983; 40:62–69
    [Google Scholar]
  28. Bradley S. G. Cellular and molecular mechanisms of action of bacterial endotoxins. AnnuRev Microbiol 1979; 33:67–94
    [Google Scholar]
  29. Watanabe H., Nakamura A., Timmis K. N. Small virulence plasmid of Shigella dysenteriae 1 strain W30864 encodes a 41, 000-dalton protein involved in formation of specific lipopolysaccharide side chains of serotype 1 isolates. Infect Immun 1984; 46:55–63
    [Google Scholar]
  30. Lindahl M., Wadstrom T. K99 surface hemagglutinin of enterotoxigenic E. coli recognizes terminal N-acetylgalac-tosamine and sialic acid residues of glycophorin and other complex glycoconjugates. Vet Microbiol 1984; 9:249–257
    [Google Scholar]
  31. Lindahl M., Faris A., Wadstrom T. Colonisation factor antigen on enterotoxigenic Escherichia coli is a sialic-specific lectin. Lancet 1982; 2:280
    [Google Scholar]
  32. Ellen R. P., Fillery E. D., Chan K. H., Grove D. A. Sialidase-enhanced lectin-like mechanism for Actinomyces viscosus and Actinomyces naeslundii hemagglutination. Infect Immun 1980; 27:335–343
    [Google Scholar]
  33. Chitnis D. S., Sharma K. D., Kamat R. S. Role of somatic antigen of Vibrio cholerae in adhesion to intestinal mucosa. J Med Microbiol 1982; 15:53–61
    [Google Scholar]
  34. Cohen P. S., Arruda J. C., Williams T. J., Laux D. C. Adhesion of a human fecal Escherichia coli strain to mouse colonic mucus. Infect Immun 1985; 48:139–145
    [Google Scholar]
/content/journal/jmm/10.1099/00222615-34-5-259
Loading
/content/journal/jmm/10.1099/00222615-34-5-259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error