1887

Abstract

Summary

The presence of in the sputum of 191 patients with cystic fibrosis was significantly related (p<0.0001) to the absence of Cross-streaking tests showed that 40 of 50 clinical strains of produced substances that inhibited the growth of When incorporated into agar plates, this antibacterial substance(s) inhibited the growth of 177 of 189 strains of nine staphylococcal species, all of 16 methicillin-resistant and 27 of 39 strains of six other gram-positive genera. The substance(s) did not inhibit 23 strains of seven gram-negative genera tested. The antibacterial activity was heat stable and could be extracted into chloroform; activity was retained on Sephadex G-15 (V/Vo≈2, M <500) and eluted as a single peak from high performance liquid chromatography, well separated from pseudomonic acid, pyocyanin and a number of other phenazines.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-34-4-213
1991-04-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/34/4/medmicro-34-4-213.html?itemId=/content/journal/jmm/10.1099/00222615-34-4-213&mimeType=html&fmt=ahah

References

  1. Meams M. B. Natural history of pulmonary infection in cystic fibrosis. In Sturges J. M. (ed)Perspective in cystic fibrosis Proceedings of the 8th International Cystic Fibrosis Conference; Toronto: Canadian Cystic Fibrosis Association 1980325–334
    [Google Scholar]
  2. Bouchard C. Influence qu’exerce sur la maladie charbonneuse l’inoculation du bacille pyocyanique. C R Acad Sci 1989; 108:713–714
    [Google Scholar]
  3. Emmerich R., Low O. Bakteriolytische Enzyme als Ursache der erworbenen Immunitat und die Heilung von Infection-skrankheiten durch dieselben. Z Hyg Infektkr 1899; 31:1–65
    [Google Scholar]
  4. Schoental R. The nature of the antibacterial agents present in Pseudomonaspyocyanea cultures. Br J Exp Pathol 1941; 22:137–147
    [Google Scholar]
  5. Young G. Pigment production and antibiotic activity in cultures of Pseudomonas aeruginosa. J Bacterial 1947; 54:109–117
    [Google Scholar]
  6. Armstrong A. V., Stewart-Tull D. E. S., Roberts J. S. Characterisation of the Pseudomonas aeruginosa factor that inhibits mouse-liver mitochondrial respiration. J Med Microbiol 1971; 4:249–262
    [Google Scholar]
  7. Watson D., MacDermot J., Wilson R., Cole P. J., Taylor G. W. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. EurJ Biochem 1986; 159:309–313
    [Google Scholar]
  8. Wilson R., Pitt T., Taylor G. Pyocyanin and 1-hydroxyphen-azine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J Clin Invest 1987; 79:221–229
    [Google Scholar]
  9. Collins-Thompson D. L., Aris B., Hurst A. Growth and entero-toxin B synthesis by Staphylococcus aureus S6 in associative growth with Pseudomonas aeruginosa. Can J Microbiol 1973; 19:1197–1201
    [Google Scholar]
  10. Brito N., Falcon M. A., Camicero A., Gutierrez-Navarro A. M., Mansito T. B. Purification and peptidase activity of a bacteriolytic extracellular enzyme from Pseudomonas aeruginosa. Res Microbiol 1989; 140:125–137
    [Google Scholar]
  11. Troller J. A., Frazier W. C. Repression of Staphylococcus aureus by food bacteria. II. Causes of inhibition. Appl Microbiol 1963; 11:163–165
    [Google Scholar]
  12. King E. O., Ward M. K., Raney D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307
    [Google Scholar]
  13. Rawlins G. A. Liquefaction of sputum for bacteriological examination. Lancet 1953; 2:538–539
    [Google Scholar]
  14. Morris H. R., Taylor G. W., Piper P. J., Tippins J. R. Structure of slow-reacting substance of anaphylaxis from guinea-pig lung. Nature 1980; 285:104–106
    [Google Scholar]
  15. Morris H. R., Taylor G. W., Piper P. J., Sirios P., Tippins J. R. Slow-reacting substance of anaphylaxis: purification and char acterisation. FEBS Lett 1978; 87:203–206
    [Google Scholar]
  16. Wilson R., Sykes D. A., Watson D., Rutman A., Taylor G. W., Cole P. J. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 1988; 56:2515–2517
    [Google Scholar]
  17. Fuller A. T., Banks G. T., Mellows G., Barrow K. D., Woolford M., Chain E. B. Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 1971; 234:416–417
    [Google Scholar]
  18. Hays E. E., Wells I. C., Katzman P. A. Antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem 1945; 159:725–750
    [Google Scholar]
  19. Zyskind J. W., Pattee P. A., Lache M. Staphylolytic substance from a species of pseudomonas. Science 1965; 147:1458–1459
    [Google Scholar]
  20. Perestelo F. R., Blanco M-T., Gutierrez-Navarro A. M., Falcon M. A. Growth inhibition of Staphylococcus aureus by a staphylolytic enzyme from Pseudomonas aeruginosa. Micro bios Letters 1985; 30:85–94
    [Google Scholar]
  21. Asensio C., Perez-Diaz J. C., Martinez M. C., Baquero F. A new family of low molecular weight antibiotics from enterobac teria. Biochem Biophys Res Commun 1976; 69:7–14
    [Google Scholar]
  22. Kurepina N. E., Khmel I. A. Microcins: their nature and genetic determination. Mol. Gen Mikrobiol Virusol 1986; 4:3–9
    [Google Scholar]
  23. Garcia-Bustos J. F., Pezzi N., Asensio C. Microcin 7: purification and properties. Biochem Biophys Res Commun 1984; 119:779–785
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-34-4-213
Loading
/content/journal/jmm/10.1099/00222615-34-4-213
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error