1887

Abstract

We sought evidence to determine if particular strains of have a predilection for pulmonary colonisation in patients with cystic fibrosis (CF). The incidence of common pyocin types in non-CF isolates (74%) was similar to that noted in previous reports but differed significantly (χ = 16·7, p < 0·001) from the incidence of 40% observed in CF isolates. A retrospective analysis of respiratory isolates also indicated a relatively low incidence of common pyocin types (44%) in isolates from non-CF patients with chronic airways diseases and this incidence also differed significantly from that observed (73%) in other respiratory isolates from patients in the same hospital. These observations suggest that a subpopulation of exists which has a predilection for pulmonary colonisation in CF and other chronic pulmonary diseases and may assist in identification of factors affecting bacterial colonisation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-32-3-169
1990-07-01
2022-10-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/32/3/medmicro-32-3-169.html?itemId=/content/journal/jmm/10.1099/00222615-32-3-169&mimeType=html&fmt=ahah

References

  1. Pitt T L. Epidemiological typing of Pseudomonas aeruginosa . Eur J Clin Microbiol Infect Dis 1988; 7:238–247
    [Google Scholar]
  2. Govan J R W. Pyocin typing of Pseudomonas aeruginosa. In Bergan T., Norris J R. eds Methods in Microbiology. vol 10: London: Academic Press; 197861–91
    [Google Scholar]
  3. Fyfe J A M., Harris G., Govan J R W. Revised pyocin typing method for Pseudomonas aeruginosa . J Clin Microbiol 1984; 20:47–50
    [Google Scholar]
  4. Ogle J W., Janda J M., Woods D E., Vasil M L. Characterization and use of a DNA probe as an epidemiological marker for Pseudomonas aeruginosa . J Infect Dis 1987; 155:119–126
    [Google Scholar]
  5. Grothues D., Koopman U., , von der Hardt H., Tummler B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988; 26:1973–1977
    [Google Scholar]
  6. Govan J R W. Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis. In Donachie W., Griffiths E., Stephen J. eds Bacterial infections of respiratory and gastrointestinal mucosae. Oxford: IRL Press; 198867–96
    [Google Scholar]
  7. Govan J R W. Characteristics of mucoid Pseudomonas aeruginosa in vitro and in vivo . In Gacesa P., Russell N J. eds Pseudomonas infection and alginates: biochemistry, genetics and pathology. London: Chapman and Hall; in press
    [Google Scholar]
  8. Kovacs N. Identification of Pseudomonaspyocyanea by the oxidase reaction. Nature 1956; 178:703
    [Google Scholar]
  9. Gierloff B. Pseudomonas aeruginosa. IV. Pyocin typing of strains isolated from the blue fox (Alopex lagopus), mink (Mustela visor), and dog (Canis familiaris) and from their environment. Nord J Vet Med 1980; 32:147–160
    [Google Scholar]
  10. Nagasawa K., Morishita Y. Pseudomonas aeruginosa and its serologic and pyocin types in commercial perishable foods. Jpn J Med Sci Biol 1983; 36:59–66
    [Google Scholar]
  11. Conroy J V., Baltch A L., Smith R P., Hammer M C., Griffin P E. Bacteremia due to Pseudomonas aeruginosa use of a combined typing system in the eight-year study. J Infect Dis 1983; 148:603
    [Google Scholar]
  12. Poh C L., Yap E H., Tay L., Bergan T. Plasmid profiles compared with serotyping and pyocin typing for epidemiological surveillance of Pseudomonas aeruginosa . J Med Microbiol 1988; 25:109–114
    [Google Scholar]
  13. Govan J R W., Gillies R R. Further studies in the pyocin typing of Pseudomonas pyocyanea . J Med Microbiol 1969; 2:17–25
    [Google Scholar]
  14. Govan J R W. Studies on the pyocins of Pseudomonas aeruginosa: Morphology and mode of action of contractile pyocins. J Gen Microbiol 1974; 80:1–15
    [Google Scholar]
  15. Govan J R W. Studies on the pyocins of Pseudomonas aeruginosa: Production of contractile and flexuous pyocins in Pseudomonas aeruginosa . J Gen Microbiol 1974; 80:17–30
    [Google Scholar]
  16. Kuroda K., Kagiyama R M. Biochemical relationship among three F-type pyocins, pyocin FI, F2 and F3 and phage KF1. J Biochem 1983; 94:1429–1441
    [Google Scholar]
  17. Ohkawa I., Kageyama M., Egami F. Purification and properties of pyocin S2. J Biochem 1973; 73:281–289
    [Google Scholar]
  18. Baquero F., Moreno F. The microcins. FEMS Microbiol Lett 1984; 23:117–124
    [Google Scholar]
  19. Govan J R W. In-vivo significance of bacteriocins and bacteriocin receptors. Scand J Infect Dis 1986Suppl 49:31–37
    [Google Scholar]
  20. Ohkawa I., Shiga S., Kageyama M. Effect of iron concentra tion in the growth medium on the sensitivity of Pseudomonas aeruginosa to pyocin S2. J Biochem 1980; 87:323–331
    [Google Scholar]
  21. Shinomiya T., Sano Y., Kikuchi A., Kageyama M. Mapping of pyocin genes on the chromosome of Pseudomonas aeruginosa using plasmid R68.45. In Mitsuhashi S. ed Drug resistance in bacteria. Tokyo, Japan Scientific Societies Press; New York, Thieme-Stratton: 1982213–217
    [Google Scholar]
  22. Sano Y., Kageyama M. Genetic determinant of pyocin AP41 as an insert in the Pseudomonas aeruginosa chromosome. J Bacterial 1984; 158:562–570
    [Google Scholar]
  23. Holloway B W., Zhong C. Pseudomonas aeruginosa PAO.. In O’ Brien S J. ed Genetic maps. Ann Arbor: Cold Spring Laboratory; In Press
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-32-3-169
Loading
/content/journal/jmm/10.1099/00222615-32-3-169
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error