1887

Abstract

SUMMARY

The cell walls of and agreed in their amino acid and amino sugar pattern, but differed strikingly in their mono- saccharide patterns. Sixteen strains contained only glucose as monosaccharide in their cell walls, whilst in three sugars were found: in 13 strains glucose, mannose and rhamnose and in the 3 others glucose, galactose and rhamnose. The sugar pattern in formamide extracts of cells is sufficient for diagnostic purposes.

Out of 16 strains 14 are ureolytic—the remaining two (one of which is pathogenic) are not. These strains are probably mutants that have lost a postulated transport mechanism for urea. Cell-free extracts of both and possessed urease activity. Possibly never possessed the postulated urease transport mechanism und is therefore not ureolytic.

Antigenic heterogeneity of and strains, as determined by agglutination tests, could not be explained by the results of simple cell-wall analysis.

The physiology of and cell walls is similar in many respects. The autolytic properties are particularly striking; autolysis could be prevented by heating. Heated cells (60 min. at 60°C, 20 min. at 100° or 120°C) are extremely sensitive to trypsin. The optical densities of suspensions of isolated cell walls of both organisms, whether heated or not, decreased rapidly in the presence of trypsin.

Although there are many similarities between and , they are better regarded as separate species; the monosaccharide pattern in their cell walls seems sufficient to distinguish them.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-2-2-81
1969-05-01
2022-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/2/2/medmicro-2-2-81.html?itemId=/content/journal/jmm/10.1099/00222615-2-2-81&mimeType=html&fmt=ahah

References

  1. Alderton G., Fevold H. L. 1946 J. Biol. Chem 164:1
    [Google Scholar]
  2. Allen R. J. L. 1940 Biochem. J 34:858
    [Google Scholar]
  3. Allsop Jennifer, Work Elizabeth. 1963 Ibid 87:512
    [Google Scholar]
  4. Altfield Gladys N., Morris C. J. O. R. 1961 Ibid 81:606
    [Google Scholar]
  5. Ashwell G. 1957 Meth. Enzym 3:84
    [Google Scholar]
  6. Belcher R., Nutten A. J., Sambrook C. M. 1954 Analyst 79:201
    [Google Scholar]
  7. Breed R. S., Murray E. G. D., Smith N. R. 1957 Bergey’s Manual of determinative bac-teriology. , 7th ed. London p. 665
    [Google Scholar]
  8. Brooks M. Elizabeth, Epps H. B. G. 1959 J. Gen. Microbiol 21:144
    [Google Scholar]
  9. Clark F. E., Hall I. C. 1937 J. Bact 33:23
    [Google Scholar]
  10. Cowgill R. W., Pardee A. B. 1957 Experiments in biochemical research techniques. New York: p. 52
    [Google Scholar]
  11. Cummins C. S., Harris H. 1956 J. Gen. Microbiol 14:583
    [Google Scholar]
  12. DżULYŃska Janina, Mikulaszek E. 1954 Acta biochim. Pol 1:191
    [Google Scholar]
  13. Ellner P. D., Green S. S. 1963 J. Bact 86:605
    [Google Scholar]
  14. Hall I. C., Scott J. P. 1927 J. Infect. Dis 41:329
    [Google Scholar]
  15. Heilmann Johanna, Barroleer J., Watzke E. 1957 Hoppe-Seyler's Z. physiol. Chem 809:219
    [Google Scholar]
  16. Hoare D. S., Work Elizabeth. 1955 Biochem. J 61:562
    [Google Scholar]
  17. Huang C. T., Tamai K., Nishida S. 1965 J. Bact 90:391
    [Google Scholar]
  18. Huet M., Aladame N. 1952 Annls Inst. Pasteur, Paris 82:766
    [Google Scholar]
  19. Jeffries C. D. 1964 Archs Path 77:544
    [Google Scholar]
  20. Krause R. M., Mccarty M. 1961 J. Exp. Med 114:127
    [Google Scholar]
  21. Kronish D. P., Mohan R. R., Schwartz B. S. 1964 J. Bact 87:581
    [Google Scholar]
  22. Malpress F. H., Morrison A. B. 1949 Nature, Lond 164:963
    [Google Scholar]
  23. Meisel H., Rymkiewicz Danuta. 1959 Medycyna dośw 11:1
    [Google Scholar]
  24. Meisel H., Świtalska Alicja. 1967 Ibid 19:49
    [Google Scholar]
  25. Nishida S., Tamai K., Yamagishi T. 1964 J. Bact 88:1641
    [Google Scholar]
  26. Novotný P. 1964a Nature, Lond 202:364
    [Google Scholar]
  27. Novotný P. 1964b Folia microbiol 9:179
    [Google Scholar]
  28. Novotný P., ČáslavskÁ Jana. 1967 Ibid 12:274
    [Google Scholar]
  29. Oakley C. L., Fulthorpe A. J. 1953 J. Path. Bad 65:49
    [Google Scholar]
  30. Partridge S. M. 1948 Biochem. J 42:238
    [Google Scholar]
  31. Patočka F., Sefrna K. 1944 Sb. lék 46:84
    [Google Scholar]
  32. Putman E. y. 1957 Meth. Enzym 3:62
    [Google Scholar]
  33. Redfield R. R. 1953 Biochim. biophys. Acta 10:344
    [Google Scholar]
  34. Reissig J. L., Strominger J. L., Leloir L. F. 1955 J. Biol. Chem 217:959
    [Google Scholar]
  35. Salton M. R. J., Horne R. W. 1951 Biochim. biophys. Acta 7:177
    [Google Scholar]
  36. Sordelli A. 1922 C.r. Séanc. Soc. Biol 87:838
    [Google Scholar]
  37. Stewart Sarah E. 1938 J. Bact 35:13
    [Google Scholar]
  38. Stoffyn P. J., Jeanloz R. W. 1954 Archs Biochem. Biophys 52:373
    [Google Scholar]
  39. Strange R. E., Kent L. H. 1959 Biochem. J 71:333
    [Google Scholar]
  40. Tamai K., Nishida S. 1964 J. Bact 88:1647
    [Google Scholar]
  41. Tardieux P., Nisman B. 1952 Annls Inst. Pasteur, Paris 82:458
    [Google Scholar]
  42. Tataki H., Huet M. 1953 Ibid 84:890
    [Google Scholar]
  43. Tissier H. Martelly. 1902 Ibid 16:865
    [Google Scholar]
  44. Trevelyan W. E., Procter D. P., Harrison J. S. 1950 Nature, Lond 166:444
    [Google Scholar]
  45. Tyrrell Elizabeth A., Macdonald R. E., Gerhardt P. 1958 J. Bact 75:1
    [Google Scholar]
  46. Walker P. y. 1963 J. Path. Bact 85:41
    [Google Scholar]
  47. Work Elizabeth. 1957 Nature, Lond 179:841
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-2-2-81
Loading
/content/journal/jmm/10.1099/00222615-2-2-81
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error