1887
Preview this article:
Zoom in
Zoomout

, Page 1 of 1

| /docserver/preview/fulltext/jmm/51/12/mjm5112.1013-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/0022-1317-51-12-1013
2002-12-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/51/12/1013.html?itemId=/content/journal/jmm/10.1099/0022-1317-51-12-1013&mimeType=html&fmt=ahah

References

  1. Oral health in America: a report of the Surgeon General. Washington, DC, US Public Health Service. 2000.
  2. Beck JD, Pankow J, Tyroler HA, Offenbacher S. Dental infections and atherosclerosis. Am Heart J 1999;; 138: S528–S533.[CrossRef]
    [Google Scholar]
  3. Lopez NJ, Smith PC, Gutierrez J. Higher risk of preterm birth and low birth weight in women with periodontal disease. J Dent Res 2002;; 81: 58–63.[CrossRef]
    [Google Scholar]
  4. Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999;; 4: 1–6.[CrossRef]
    [Google Scholar]
  5. Kuramitsu HK, Ellen RP. Oral bacterial ecology: the molecular basis. Norfolk, Wymondham Scientific Press. 2000.
  6. Tonetti MS, Mombelli A. Early-onset periodontitis. Ann Periodontol 1999;; 4: 39–53.[CrossRef]
    [Google Scholar]
  7. Slots J, Ting M. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontology 2000 1999;; 20: 82–121.[CrossRef]
    [Google Scholar]
  8. van Winkelhoff AJ, Slots J. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in nonoral infections. Periodontology 2000 1999;; 20: 122–135.[CrossRef]
    [Google Scholar]
  9. Loe H, Brown LJ. Early onset periodontitis in the United States of America. J Periodontol 1991;; 62: 608–616.[CrossRef]
    [Google Scholar]
  10. Gjermo P, Bellini HT, Pereira Santos V, Martins JG, Ferracyoli JR. Prevalence of bone loss in a group of Brazilian teenagers assessed on bite-wing radiographs. J Clin Periodontol 1984;; 11: 104–113.[CrossRef]
    [Google Scholar]
  11. Macgregor ID. Radiographic survey of periodontal disease in 264 adolescent schoolboys in Lagos Nigeria. Community Dent Oral Epidemiol 1980;; 8: 56–60.[CrossRef]
    [Google Scholar]
  12. Harley AF, Floyd PD. Prevalence of juvenile periodontitis in schoolchildren in Lagos Nigeria. Community Dent Oral Epidemiol 1988;; 16: 299–301.[CrossRef]
    [Google Scholar]
  13. Haubek D, Dirienzo JM, Tinoco EMB.et al. Racial tropism of a highly toxic clone of Actinobacillus actinomycetemcomitans associated with juvenile periodontitis. J Clin Microbiol 1997;; 35: 3037–3042.
    [Google Scholar]
  14. Haubek D, Poulsen K, Asikainen S, Kilian M. Evidence for absence in northern Europe of especially virulent clonal types of Actinobacillus actinomycetemcomitans. J Clin Microbiol 1995;; 33: 395–401.
    [Google Scholar]
  15. Dennison DK, Van Dyke TE. The acute inflammatory response and the role of phagocytic cells in periodontal health and disease. Periodontology 2000 1997;; 14: 54–78.[CrossRef]
    [Google Scholar]
  16. McMullen JA, Van Dyke TE, Horoszewicz HU, Genco RJ. Neutrophil chemotaxis in individuals with advanced periodontal disease and a genetic predisposition to diabetes mellitus. J Periodontol 1981;; 52: 167–173.[CrossRef]
    [Google Scholar]
  17. Gwinn MR, Sharma A, De Nardin E. Single nucleotide polymorphisms of the N-formyl peptide receptor in localized juvenile periodontitis. J Periodontol 1999;; 70: 1194–1201.[CrossRef]
    [Google Scholar]
  18. Seifert R, Wenzel-Seifert K. Defective GI protein coupling in two formyl peptide receptor mutants associated with localized juvenile periodontitis. J Biol Chem 2001;; 276: 42043–42049.[CrossRef]
    [Google Scholar]
  19. Heinrich S, Pulverer G. Zur ätiologie und mikrobiologie des Actinomykose. III. Zentralblat Bakteriol Parasitenk Infectionskr Hyg Abt Orig 1959;; 176: 91–101.
    [Google Scholar]
  20. Slots J, Reynolds HS, Genco RJ. Actinobacillus actinomycetemcomitans in human periodontal disease: a cross-sectional microbiological investigation. Infect Immun 1980;; 29: 1013–1020.
    [Google Scholar]
  21. Frisken KW, Higgins T, Palmer JM. The incidence of periodontopathic micro-organisms in young children. Oral Microbiol Immunol 1990;; 5: 43–45.[CrossRef]
    [Google Scholar]
  22. Kononen E, Asikainen S, Alaluusua S.et al. Are certain oral pathogens part of the normal oral flora in denture-wearing edentulous subjects? Oral Microbiol Immunol 1991;; 6: 119–122.[CrossRef]
    [Google Scholar]
  23. Sreenivasan PK, Meyer DH, Fives-Taylor PM. Factors influencing the growth and viability of Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 1993;; 8: 361–369.[CrossRef]
    [Google Scholar]
  24. Kagermeier AS, London J. Actinobacillus actinomycetemcomitans strains Y4 and N27 adhere to hydroxyapatite by distinctive mechanisms. Infect Immun 1985;; 47: 654–658.
    [Google Scholar]
  25. Rosan B, Slots J, Lamont RJ, Listgarten MA, Nelson GM. Actinobacillus actinomycetemcomitans fimbriae. Oral Microbiol Immunol 1988;; 3: 58–63.[CrossRef]
    [Google Scholar]
  26. Fine DH, Furgang D, Kaplan J, Charlesworth J, Figurski DH. Tenacious adhesion of Actinobacillus actinomycetemcomitans strain CU1000 to salivary coated hydroxyapatite. Arch Oral Biol 1999;; 44: 1063–1076.[CrossRef]
    [Google Scholar]
  27. Fine DH, Furgang D, Schreiner HC.et al. Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology 1999;; 145: 1335–1347.[CrossRef]
    [Google Scholar]
  28. Kachlany SC, Planet PJ, Bhattacharjee MK.et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol 2000;; 182: 6169–6176.[CrossRef]
    [Google Scholar]
  29. Planet PJ, Kachlany SC, DeSalle R, Figurski DH. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 2001;; 98: 2503–2508.[CrossRef]
    [Google Scholar]
  30. Kachlany SC, Planet PJ, DeSalle R, Fine DH, Figurski DH, Kaplan JB. flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Mol Microbiol 2001;; 40: 542–554.[CrossRef]
    [Google Scholar]
  31. Kachlany SC, Planet PJ, DeSalle R, Fine DH, Figurski DH. Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum. Trends Microbiol 2001;; 9: 429–437.[CrossRef]
    [Google Scholar]
  32. Mintz KP, Fives-Taylor PM. impA, a gene coding for an inner membrane protein.Influences colonial morphology of Actinobacillus actinomycetemcomitans. Infect Immun 2000;; 68: 6580–6586.[CrossRef]
    [Google Scholar]
  33. Mintz KP, Fives-Taylor PM. Binding of the periodontal pathogen Actinobacillus actinomycetemcomitans to extracellular matrix proteins. Oral Microbiol Immunol 1999;; 14: 109–116.[CrossRef]
    [Google Scholar]
  34. Kaplan JB, Perry MB, MacLean LL, Furgang D, Wilson ME, Fine DH. Structural and genetic analysis of O-polysaccharide from Actinobacillus actinomycetemcomitans serotype f. Infect Immun 2001;; 69: 5375–5384.[CrossRef]
    [Google Scholar]
  35. Kaplan JB, Schreiner HC, Furgang D, Fine DH. Population structure and genetic diversity of Actinobacillus actinomycetemcomitans strains isolated from localized juvenile periodontitis patients. J Clin Microbiol 2002;; 40: 1181–1187.[CrossRef]
    [Google Scholar]
  36. Lally ET, Hill RB, Kieba IR, Korostoff J. The interaction between RTX toxins and target cells. Trends Microbiol 1999;; 7: 356–361.[CrossRef]
    [Google Scholar]
  37. Narayanan SV, Nagaraja TG, Chengappa MM, Stewart GC. Leukotoxins of gram-negative bacteria. Vet Microbiol 2002;; 84: 337–356.[CrossRef]
    [Google Scholar]
  38. Lally ET, Kieba IR, Sato A.et al. RTX toxins recognize a β2 integrin on the surface of human target cells. J Biol Chem 1997;; 272: 30463–30469.[CrossRef]
    [Google Scholar]
  39. Lally ET, Golub EE, Kieba IR.et al. Structure and function of the B and D genes of the Actinobacillus actinomycetemcomitans leukotoxin complex. Microb Pathog 1991;; 11: 111–121.[CrossRef]
    [Google Scholar]
  40. Ohta H, Hara H, Fukui K, Kurihara H, Murayama Y, Kato K. Association of Actinobacillus actinomycetemcomitans leukotoxin with nucleic acids on the bacterial cell surface. Infect Immun 1993;; 61: 4878–4884.
    [Google Scholar]
  41. Berthold P, Forti D, Kieba IR, Rosenbloom J, Taichman NS, Lally ET. Electron immunocytochemical localization of Actinobacillus actinomycetemcomitans leukotoxin. Oral Microbiol Immunol 1992;; 7: 24–27.[CrossRef]
    [Google Scholar]
  42. Kato S, Kowashi Y, Demuth DR. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 2002;; 32: 1–13.[CrossRef]
    [Google Scholar]
  43. Lally ET, Golub EE, Kieba IR.et al. Analysis of the Actinobacillus actinomycetemcomitans leukotoxin gene: delineation of unique features and comparison to homologous toxins. J Biol Chem 1989;; 264: 15451–15456.
    [Google Scholar]
  44. Kachlany SC, Fine DH, Figurski DH. Secretion of RTX leukotoxin by Actinobacillus actinomycetemcomitans. Infect Immun 2000;; 68: 6094–6100.[CrossRef]
    [Google Scholar]
  45. Korostoff J, Fei Wang J, Kieba I, Miller M, Shenker BJ, Lally ET. Actinobacillus actinomycetemcomitans leukotoxin induces apoptosis in HL-60 cells. Infect Immun 1998;; 66: 4474–4483.
    [Google Scholar]
  46. Korostoff J, Yamaguchi N, Miller M, Kieba I, Lally ET. Perturbation of mitochondrial structure and function plays a central role in Actinobacillus actinomycetemcomitans leukotoxin-induced apoptosis. Microb Pathog 2000;; 29: 267–278.[CrossRef]
    [Google Scholar]
  47. Chen PB, Davern LB, Neiders ME, Reynolds HS, Zambon JJ. Analysis of in vitro lymphoproliferative responses and antibody formation following the subcutaneous injection of Actinobacillus actinomycetemcomitans and Wolinella recta in a murine model. Oral Microbiol Immunol 1991;; 6: 12–16.[CrossRef]
    [Google Scholar]
  48. Kuritai Ochiai T, Ochiai K, Ikeda T. Immunosuppressive effects induced by Actinobacillus actinomycetemcomitans: effect on immunoglobulin production and lymphokine synthesis. Oral Microbiol Immunol 1992;; 7: 338–343.[CrossRef]
    [Google Scholar]
  49. Kuritai-Ochiai T, Ochiai K. Immunosuppressive factor from Actinobacillus actinomycetemcomitans down regulates cytokine production. Infect Immun 1996;; 64: 50–54.
    [Google Scholar]
  50. Tagaya Y, Maeda Y, Mitsui A.et al. ATL-driven factor (ADF), an IL-2receptor/Tac inducer homologous to thioredoxin: possible involvement of dithiol-reduction of the IL-2 receptor induction. EMBO J 1989;; 8: 757–764.
    [Google Scholar]
  51. Henderson B, Tabona P, Poole S, Nair SP. Cloning and expression of the Actinobacillus actinomycetemcomitans thioredoxin (trx) gene and assessment of cytokine inhibitory activity. Infect Immun 2001;; 69: 154–158.[CrossRef]
    [Google Scholar]
  52. Nalbant A, Zadeh HH. Evidence for apoptosis of the majority of T cells activated in vitro with Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 2000;; 15: 290–298.[CrossRef]
    [Google Scholar]
  53. Zadeh HH, Nalbant A, Park K. Large-scale early in vitro response to Actinobacillus actinomycetemcomitans suggests superantigenic activation of T-cells. J Dent Res 2001;; 80: 356–362.[CrossRef]
    [Google Scholar]
  54. White PA, Wilson M, Nair SP, Kirby AC, Reddi K, Henderson B. Characterization of an antiproliferative surface-associated protein from Actinobacillus actinomycetemcomitans which can be neutralized by sera from a proportion of patients with localized juvenile periodontitis. Infect Immun 1995;; 63: 2612–2618.
    [Google Scholar]
  55. White PA, Pater M, Nair S.et al. Control of the human cell cycle by a bacterial protein, gapstatin. Eur J Cell Biol 1998;; 77: 228–238.[CrossRef]
    [Google Scholar]
  56. Helgeland K, Nordby O. Cell cycle-specific growth inhibitory effect on human gingival fibroblasts of a toxin isolated from the culture medium of Actinobacillus actinomycetemcomitans. J Periodont Res 1993;; 28: 161–165.[CrossRef]
    [Google Scholar]
  57. Ohguchi M, Ishisaki A, Okahashi N.et al. Actinobacillus actinomycetemcomitans toxin induces both cell cycle arrest in the G2/M phase and apoptosis. Infect Immun 1998;; 66: 5980–5987.
    [Google Scholar]
  58. Pickett CL, Whitehouse CA. The cytolethal distending toxin family. Trends Microbiol 1999;; 7: 292–297.[CrossRef]
    [Google Scholar]
  59. De Rycke J, Oswald E. Minireview: Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation? FEMS Microbiol Lett 2001;; 203: 141–148.[CrossRef]
    [Google Scholar]
  60. Lara-Tejero M, Galán JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 2000;; 290: 354–357.[CrossRef]
    [Google Scholar]
  61. Sugai M, Kawamoto T, Peres SY.et al. The cell cycle-specific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a cytolethal distending toxin. Infect Immun 1998;; 66: 5008–5019.
    [Google Scholar]
  62. Mayer MPA, Bueno LAC, Hansen EJ, DiRienzo JM. Identification of a cytolethal distending toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans. Infect Immun 1999;; 67: 1227–1237.
    [Google Scholar]
  63. Shenker BJ, McKay T, Datar S, Miller M, Chowhan R, Demuth D. Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing a G2 arrest in human T cells. J Immunol 1999;; 162: 4773–4780.
    [Google Scholar]
  64. Shenker BJ, Hoffmaster RH, McKay TL, Demuth DR. Expression of the cytolethal distending toxin (cdt) operon in Actinobacillus actinomycetemcomitans: evidence that the CdtB protein is responsible for G2 arrest of the cell cycle in human T cells. J Immunol 2000;; 165: 2612–2618.[CrossRef]
    [Google Scholar]
  65. Shenker BJ, Hoffmaster RH, Zekavat A, Lally NET, Demuth DR, Yamaguchi N. Induction of apoptosis in human T cells by Actinobacillus actinomycetemcomitans cytolethal distending toxin is a consequence of G2 arrest of the cell cycle. J Immunol 2001;; 167: 435–441.[CrossRef]
    [Google Scholar]
  66. Akifusa S, Poole S, Lewthwaite J, Henderson B, Nair SP. Recombinant Actinobacillus actinomycetemcomitans cytolethal distending toxin proteins are required to interact to inhibit human cell cycle progression and to stimulate human cytokine synthesis. Infect Immun 2001;; 69: 5925–5930.[CrossRef]
    [Google Scholar]
  67. Akifusa S, Nair SP, Sharp LJ, Stenbeck G, Henderson B. Mechanism of internalization of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Infect Immun (in press).
  68. Young RS, Fortney KR, Gelfanova V.et al. Expression of cytolethal distending toxin and hemolysin is not required for pustule formation by Haemophilus ducreyi in human volunteers. Infect Immun 2001;; 69: 1938–1942.[CrossRef]
    [Google Scholar]
  69. Tolo K, Helgeland K. Fc binding components: a virulence factor in Actinobacillus actinomycetemcomitans? Oral Microbiol Immunol 1991;; 6: 373–377.[CrossRef]
    [Google Scholar]
  70. Mintz KP, Fives-Taylor PM. Identification of an immunoglobulin Fc receptor of Actinobacillus actinomycetemcomitans. Infect Immun 1994;; 62: 4500–4505.
    [Google Scholar]
  71. White PA, Nair SP, Kim M-J, Wilson M, Henderson B. Molecular characterization of an outer membrane protein of Actinobacillus actinomycetemcomitans belonging to the OmpA family. Infect Immun 1998;; 66: 369–372.
    [Google Scholar]
  72. Weiser JN, Gotschlich EC. Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun 1991;; 59: 2252–2258.
    [Google Scholar]
  73. Kato T, Okudo K. Actinobacillus actinomycetemcomitans possesses an antigen binding to anti-human IL-10 antibody. FEMS Microbiol Lett 2001;; 204: 293–297.[CrossRef]
    [Google Scholar]
  74. Van Dyke TE, Bartholomew E, Genco RJ, Slots J, Levine MJ. Inhibition of neutrophil chemotaxis by soluble bacterial products. J Periodontol 1992;; 53: 502–508.
    [Google Scholar]
  75. Huang GT-J, Kim D, Lee JK-H, Kuramitsu HK, Haake SK. Interleukin-8 and intercellular adhesion molecule 1 regulation in oral epithelial cells by selected periodontal bacteria: multiple effects of Porphyromonas gingivalis via antagonistic mechanisms. Infect Immun 2001;; 69: 1364–1372.[CrossRef]
    [Google Scholar]
  76. Uchida Y, Shiba H, Komatsuzawa H.et al. Expression of IL-1β and IL-8 by human gingival cells in response to Actinobacillus actinomycetemcomitans. Cytokine 2001;; 14: 152–161.[CrossRef]
    [Google Scholar]
  77. Reddi K, Nair SP, White PA.et al. Surface-associated material from the bacterium Actinobacillus actinomycetemcomitans contains a peptide which, in contrast to lipopolysaccharide, directly stimulates fibroblast interleukin-6 gene transcription. Eur J Biochem 1996;; 236: 871–876.[CrossRef]
    [Google Scholar]
  78. Tani Y, Tani M, Kato I. Extracellular 37-kDa antigenic protein from Actinobacillus actinomycetemcomitans induces TNFα, IL-1β, and IL-6 in murine macrophages. J Dent Res 1997;; 76: 1539–1547.
    [Google Scholar]
  79. Nishihara T, Koga T, Hamada S. Extracellular proteinaceous substances from Haemophilus actinomycetemcomitans induce mitogenic responses in murine lymphocytes. Oral Microbiol Immunol 1987;; 2: 48–52.[CrossRef]
    [Google Scholar]
  80. Jeong S-J, Yee S-T, Jo W-S.et al. A novel factor isolated from Actinobacillus actinomycetemcomitans stimulates mouse B cells and human peripheral blood mononuclear cells. Infect Immun 2000;; 68: 5132–5138.[CrossRef]
    [Google Scholar]
  81. Nakano Y, Suzuki N, Yoshida Y, Nezu T, Yamashita Y, Koga T. Thymidine diphosphate-6-deoxy-d-lyxo-4-hexulose reductase synthesising dTDT-6-deoxy-d-talose from Actinobacillus actinomycetemcomitans. J Biol Chem 2000;; 275: 6806–6812.[CrossRef]
    [Google Scholar]
  82. Suzuki N, Nakano Y, Yoshida Y, Nakao H, Yamashita Y, Koga T. Genetic analysis of the gene cluster for the synthesis of serotype a-specific polysaccharide antigen in Actinobacillus actinomycetemcomitans. Biochim Biophys Acta 2000;; 1517: 135–138.[CrossRef]
    [Google Scholar]
  83. Arnett TR, Henderson B (eds). Methods in bone biology. London, Chapman & Hall. 1998.
  84. Horowitz MC, Ki Y, Wilson M, Kacena MA. Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev 2001;; 12: 9–18.[CrossRef]
    [Google Scholar]
  85. Yoshimura A, Kaneko T, Kato Y, Golenbock DT, Hara Y. Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human toll-like receptor 4. Infect Immun 2002;; 70: 218–225.[CrossRef]
    [Google Scholar]
  86. Iino Y, Hopps RM. The bone-resorbing activities in tissue culture of lipopolysaccharides from the bacteria Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Capnocytophaga ochracea isolated from human mouths. Arch Oral Biol 1984;; 29: 59–63.[CrossRef]
    [Google Scholar]
  87. Ishihara Y, Nishihara T, Maki E, Noguchi T, Koga T. Role of interleukin-1 and prostaglandin in in vitro bone resorption induced by Actinobacillus actinomycetemcomitans lipopolysaccharide. J Periodont Res 1991;; 26: 155–160.[CrossRef]
    [Google Scholar]
  88. Nishida E, Hara Y, Kaneko T, Ikeda Y, Ukai T, Kato I. Bone resorption and local interleukin-1 alpha and interleukin-1 beta synthesis induced by Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis lipopolysaccharide. J Periodont Res 2001;; 36: 1–8.[CrossRef]
    [Google Scholar]
  89. Reddi K, Wilson M, Poole S, Meghji S, Henderson B. Relative cytokine-stimulating activities of surface components of the oral periodontopathic bacterium Actinobacillus actinomycetemcomitans. Cytokine 1995;; 7: 534–541.
    [Google Scholar]
  90. Kirby AC, Meghji S, Nair SP.et al. The potent bone-resorbing mediator of Actinobacillus actinomycetemcomitans is homologous to the molecular chaperone GroEL. J Clin Invest 1995;; 96: 1185–1194.[CrossRef]
    [Google Scholar]
  91. Goulhen F, Hafezi A, Uitto V-J.et al. Subcellular localization and cytotoxic activity of the GroEL-like protein isolated from Actinobacillus actinomycetemcomitans. Infect Immun 1998;; 66: 5307–5313.
    [Google Scholar]
  92. Reddi K, Meghji S, Nair SP.et al. The Escherichia coli chaperonin 60 (groEL) is a potent stimulator of osteoclast formation. J Bone Miner Res 1998;; 13: 1260–1266.[CrossRef]
    [Google Scholar]
  93. Nishihara T, Ueda N, Anano K.et al. Actinobacillus actinomycetemcomitans Y4 capsular-polysaccharide-like polysaccharide promotes osteoclast-like cell formation by interleukin-1α production in mouse marrow cultures. Infect Immun 1995;; 63: 1893–1898.
    [Google Scholar]
  94. Yamamoto S, Mogi M, Kinpara K.et al. Anti-proliferative capsular-like polysaccharide antigen from Actinobacillus actinomycetemcomitans induces apoptotic cell death in mouse osteoblastic MC3T3-E1 cells. J Dent Res 1999;; 78: 1230–1237.[CrossRef]
    [Google Scholar]
  95. Kawai T, Eisen-Lev R, Seki M, Eastcott JW, Wilson ME, Taubman MA. Requirement of B7 costimulation for Th1-mediated inflammatory bone destruction in experimental periodontal disease. J Immunol 2000;; 164: 2102–2109.[CrossRef]
    [Google Scholar]
  96. Teng Y-T, Nguyen H, Gao X.et al. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest 2000;; 106: R59–R67.[CrossRef]
    [Google Scholar]
  97. Wilson M, McNab R, Henderson B. Bacterial disease mechanisms: an introduction to cellular microbiology. Cambridge, Cambridge University Press. 2002.
  98. Holt SC, Tanner AC, Socransky SS. Morphology and ultrastructure of oral strains of Actinobacillus actinomycetemcomitans and Haemophilis aphrophilus. Infect Immun 1980;; 30: 588–600.
    [Google Scholar]
  99. Inouye T, Ohta H, Kokeguchi S, Fukui K, Kato K. Colonial variation and fimbriation of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 1990;; 57: 13–17.
    [Google Scholar]
  100. Inoue T, Tanimoto I, Ohta H, Kato K, Murayama Y, Fukui K. Molecular characterization of low-molecular-weight component protein, Flp, in Actinobacillus actinomycetemcomitans fimbriae. Microbiol Immunol 1998;; 42: 253–258.[CrossRef]
    [Google Scholar]
  101. Inoue T, Ohta H, Tanimoto I, Shingaki R, Fukui K. Heterogeneous post-translational modification of Actinobacillus actinomycetemcomitans fimbrillin. Microbiol Immunol 2000;; 44: 715–718.[CrossRef]
    [Google Scholar]
  102. Haase EM, Zmuda JL, Scannapieco FA. Identification and molecular analysis of rough-colony-specific outer membrane proteins of Actinobacillus actinomycetemcomitans. Infect Immun 1999;; 67: 2901–2908.
    [Google Scholar]
  103. Fuller TE, Kennedy MJ, Lowery DE. Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb Pathog 2000;; 29: 25–38.[CrossRef]
    [Google Scholar]
  104. Oelschlaeger TA, Hacker J. Bacterial invasion into eukaryotic cells. New York, Kluwer Academic. 2000.
  105. Meyer DH, Sreenivasan PK, Fives-Taylor PM. Evidence for invasion of a human oral cell line by Actinobacillus actinomycetemcomitans. Infect Immun 1991;; 59: 2719–2726.
    [Google Scholar]
  106. Lepine G, Caudry S, DiRienzo JM, Ellen RP. Epithelial cell invasion by Actinobacillus actinomycetemcomitans strains from restriction fragment length polymorphism groups associated with juvenile periodontitis or carrier status. Oral Microbiol Immunol 1998;; 13: 341–347.[CrossRef]
    [Google Scholar]
  107. Meyer DH, Mintz KP, Fives-Taylor PM. Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. Crit Rev Oral Biol Med 1997;; 8: 389–409.[CrossRef]
    [Google Scholar]
  108. Schenkein HA, Barbour SE, Berry CR, Kipps B, Tew JG. Invasion of human vascular endothelial cells by Actinobacillus actinomycetemcomitans via the receptor for platelet-activating factor. Infect Immun 2000;; 68: 5416–5419.[CrossRef]
    [Google Scholar]
  109. Swords WE, Buscher BA, Ver Steeg K.et al. Non-typeable Haemophilis influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol Microbiol 2000;; 37: 13–27.[CrossRef]
    [Google Scholar]
  110. Sreenivasan PK, Meyer DH, Fives-Taylor PM. Requirement for invasion of epithelial cells by Actinobacillus actinomycetemcomitans. Infect Immun 1993;; 61: 1239–1245.
    [Google Scholar]
  111. Meyer DH, Lippman JE, Fives-Taylor PM. Invasion of epithelial cells by Actinobacillus actinomycetemcomitans: a dynamic multistep process. Infect Immun 1996;; 64: 2988–2997.
    [Google Scholar]
  112. Meyer DH, Rose JE, Lippman JE, Fives-Taylor PM. Microtubules are associated with intracellular movement and spread of the periodontopathogen Actinobacillus actinomycetemcomitans. Infect Immun 1999;; 67: 6518–6525.
    [Google Scholar]
  113. Rudney JD, Chen R, Sedgewick GJ. Intracellular Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in buccal epithelial cells collected from human subjects. Infect Immun 2001;; 69: 2700–2707.[CrossRef]
    [Google Scholar]
  114. Fong KP, Chung WO, Lamont RJ, Demuth DR. Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect Immun 2001;; 69: 7625–7634.[CrossRef]
    [Google Scholar]
  115. Viallard J-F, Bonnet S, Couzi L.et al. Glomerulonephritis caused by Actinobacillus actinomycetemcomitans mimicking c-ANCA-positive vasculitis. Nephrol Dial Transplant 2002;; 17: 663–665.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/0022-1317-51-12-1013
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error