1887

Abstract

The complex presently comprises nine genomovars: (genomovar I), (genomovar II), genomovar III, (genomovar IV), (genomovar V), genomovar VI, (genomovar VII), (genomovar VIII) and (genomovar IX). Strains of each genomovar can colonise the respiratory tract of cystic fibrosis (CF) patients. However, the majority of infections in CF patients are caused by and genomovar III isolates. Accurate genomovar-level identification is best achieved through a polyphasic approach combining phenotypic and genotypic analyses. In the present study, the sensitivity and specificity of based genomovar specific primer pairs were evaluated with a collection of 508 complex isolates representing all nine genomovars. The assays for the identification of (sensitivity and specificity, 100%), genomovar III (sensitivity, 92%; specificity, 100%), and (sensitivity and specificity, 100%) were the most efficient. However, the genomovar I assay lacked sensitivity (72%) and cross-reacted with all isolates examined. Several new RFLP types were also revealed within the complex. One of these profiles was shared by a clinical and an environmental like isolate and by the type strain. The latter organism is a recently described soil bacterium. Its relationship to the various complex genomovars needs further study.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/0022-1317-51-11-937
2002-11-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jmm/51/11/937.html?itemId=/content/journal/jmm/10.1099/0022-1317-51-11-937&mimeType=html&fmt=ahah

References

  1. Burkholder WH. Sour skin, a bacterial rot of onion bulbs. Phytopathology 1950; 40:115–117
    [Google Scholar]
  2. Isles A, Maclusky I, Corey M. et al. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 1984; 104:206–210 [CrossRef]
    [Google Scholar]
  3. Nolan G, McIvor P, Levison H, Fleming PC, Corey M, Gold R. Antibiotic prophylaxis in cystic fibrosis: inhaled cephaloridine as an adjunct to oral cloxacillin. J Pediatr 1982; 101:626–630 [CrossRef]
    [Google Scholar]
  4. Thomassen MJ, Demko CA, Klinger JD, Stern RC. Pseudomonas cepacia colonization among patients with cystic fibrosis.A new opportunist. Am Rev Respir Dis 1985; 131:791–796
    [Google Scholar]
  5. Martone JW, Tablan OC, Jarvis WR. The epidemiology of nosocomial epidemic Pseudomonas cepacia infections. Eur J Epidemiol 1987; 3:222–232 [CrossRef]
    [Google Scholar]
  6. O'Neil KM, Herman JH, Modlin JF, Moxon ER, Winkelstein JA. Pseudomonas cepacia : an emerging pathogen in chronic granulomatous disease. J Pediatr 1986; 108:940–942 [CrossRef]
    [Google Scholar]
  7. Poe RH, Marcus HR, Emerson GL. Lung abscess due to Pseudomonas cepacia . Am Rev Respir Dis 1977; 115:861–865
    [Google Scholar]
  8. LiPuma JJ. Burkholderia cepacia .Management issues and new insights. Clin Chest Med 1998; 19:473–486 [CrossRef]
    [Google Scholar]
  9. Govan JR, Brown PH, Maddison J. et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993; 342:15–19 [CrossRef]
    [Google Scholar]
  10. Muhdi K, Edenborough FP, Gumery L. et al. Outcome for patients colonised with Burkholderia cepacia in a Birmingham adult cystic fibrosis clinic and the end of an epidemic. Thorax 1996; 51:374–377 [CrossRef]
    [Google Scholar]
  11. Thomassen MJ, Demko CA, Doershuk CF, Stern RC, Klinger JD. Pseudomonas cepacia : decrease in colonization in patients with cystic fibrosis. Am Rev Respir Dis 1986; 134:669–671
    [Google Scholar]
  12. LiPuma JJ, Spilker T, Gill LH, Campbell PW, Liu L, Mahenthiralingam E. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Resp Crit Care Med 2001; 164:92–96 [CrossRef]
    [Google Scholar]
  13. Speert DP. Understanding Burkholderia cepacia : epidemiology, genomovars, and virulence. Infect Med 2001; 18:49–56
    [Google Scholar]
  14. Vandamme P, Holmes B, Vancanneyt M. et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 1997; 47:1188–1200 [CrossRef]
    [Google Scholar]
  15. Coenye T, LiPuma JJ, Henry D. et al. Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Microbiol 2001; 51:271–279
    [Google Scholar]
  16. Coenye T, Mahenthiralingam E, Henry D. et al. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 2001; 51:1481–1490
    [Google Scholar]
  17. Vandamme P, Henry D, Coenye T. et al. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 2001; 33:143–149
    [Google Scholar]
  18. Vandamme P, Mahenthiralingam E, Holmes B. et al. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 2000; 38:1042–1047
    [Google Scholar]
  19. Gillis M, Van Van T, Bardin R. et al. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 1995; 45:274–289 [CrossRef]
    [Google Scholar]
  20. Imanaka H, Kousaka M, Tamura G, Arima K. Studies on pyrrolnitrin, a new antibiotic. II. J Antibiot 1965; 18:205–206
    [Google Scholar]
  21. Bauernfeind A, Schneider I, Jungwirth R, Roller C. Discrimination of Burkholderia multivorans and Burkholderia vietnamiensis from Burkholderia cepacia genomovars I, III, and IV by PCR. J Clin Microbiol 1999; 37:1335–1339
    [Google Scholar]
  22. LiPuma JJ, Dulaney BJ, Mcmenamin JD. et al. Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J Clin Microbiol 1999; 37:3167–3170
    [Google Scholar]
  23. Whitby PW, Carter KB, Hatter KL, LiPuma JJ, Stull TL. Identification of members of the Burkholderia cepacia complex by species-specific PCR. J Clin Microbiol 2000; 38:2962–2965
    [Google Scholar]
  24. Fiore A, Laevens S, Bevivino A. et al. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ Microbiol 2001; 3:137–143 [CrossRef]
    [Google Scholar]
  25. Ségonds C, Heulin T, Marty N, Chabanon G. Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol 1999; 37:2201–2208
    [Google Scholar]
  26. Mahenthiralingam E, Bischof J, Byrne SK. et al. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis , Burkholderia stabilis , and Burkholderia cepacia genomovars I and III. J Clin Microbiol 2000; 38:3165–3173
    [Google Scholar]
  27. Mahenthiralingam E, Coenye T, Chung JW. et al. Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 2000; 38:910–913
    [Google Scholar]
  28. Yabuuchi E, Kawamura Y, Ezaki T. et al. Burkholderia uboniae sp. nov., L-arabinose-assimilating but different from Burkholderia thailandensis and Burkholderia vietnamiensis . Microbiol Immunol 2000; 44:307–317 [CrossRef]
    [Google Scholar]
/content/journal/jmm/10.1099/0022-1317-51-11-937
Loading
/content/journal/jmm/10.1099/0022-1317-51-11-937
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error