Full text loading...
Abstract
This study examined whether exposure of pigs to both porcine respiratory coronavirus (PRCV) and bacterial lipopolysaccharide (LPS) can potentiate respiratory disease and lung secretion of tumour necrosis factor-α (TNF-α) and interleukin-1 (IL-1). Caesarian-derived colostrum-deprived pigs were inoculated intratracheally with PRCV, with LPS from Escherichia coli O111:B4 (20 μg/kg), or with a combination of the two, and killed at set times after inoculation. Clinical signs, virus replication and (histo)pathological changes in the lungs, percentage of neutrophils and bioactive TNF-α and IL-1 in broncho-alveolar lavage (BAL) fluids were examined. The effects of separate virus or LPS inoculations were subclinical and failed to induce high and sustained cytokine levels. In a preliminary study, pigs were inoculated with PRCV and then with LPS 24 h later and killed sequentially. Severe respiratory disease and significantly enhanced TNF-α titres (208–3601 U/ml versus 40–89 U/ml after LPS only) were seen during the first 12 h after LPS inoculation. IL-1 levels (106–1631 U/ml versus 28–654 U/ml after LPS only) were also increased, but persisted for longer after clinical recovery than TNF-α. In a second study, pigs were inoculated with PRCV and subsequently with LPS at various time intervals ranging from 0 to 24 h, and killed 5 h after inoculation with LPS. A time interval of at least 12 h between inoculations was necessary for prominent respiratory signs to develop. Production of TNF-α, but not IL-1, was also dependent on the time interval between inoculations and was tightly correlated with disease. Lung neutrophil infiltration and pathological changes were comparable after combined PRCV-LPS and single LPS inoculations, and were not associated with disease. These data show that exposure to high endotoxin concentrations in swine buildings can precipitate respiratory disease in PRCV-infected pigs, and that TNF-α is probably an important mediator of these effects. This is the first in-vivo demonstration of synergy between respiratory viruses and LPS.
- Published Online: