1887

Abstract

A distinctive feature of positive-strand RNA viruses is the presence of high-order structural elements at the untranslated regions (UTR) of the genome that are essential for viral RNA replication. The RNA of all members of the family initiate translation internally, via an internal ribosome entry site (IRES) element present in the 5′ UTR. IRES elements consist of -acting RNA structures that usually require specific RNA-binding proteins for translational machinery recruitment. This specialized mechanism of translation initiation is shared with other viral RNAs, e.g. from hepatitis C virus and pestivirus, and represents an alternative to the cap-dependent mechanism. In cells infected with many picornaviruses, proteolysis or changes in phosphorylation of key host factors induces shut off of cellular protein synthesis. This event occurs simultaneously with the synthesis of viral gene products since IRES activity is resistant to the modifications of the host factors. Viral gene expression and RNA replication in positive-strand viruses is further stimulated by viral RNA circularization, involving direct RNA–RNA contacts between the 5′ and 3′ ends as well as RNA-binding protein bridges. In this review, we discuss novel insights into the mechanisms that control picornavirus gene expression and compare them to those operating in other positive-strand RNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83426-0
2008-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/611.html?itemId=/content/journal/jgv/10.1099/vir.0.83426-0&mimeType=html&fmt=ahah

References

  1. Alexander, L., Lu, H. H. & Wimmer, E. ( 1994; ). Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci U S A 91, 1406–1410.[CrossRef]
    [Google Scholar]
  2. Ali, I. K., McKendrick, L., Morley, S. J. & Jackson, R. J. ( 2001; ). Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. J Virol 75, 7854–7863.[CrossRef]
    [Google Scholar]
  3. Almstead, L. L. & Sarnow, P. ( 2007; ). Inhibition of U snRNP assembly by a virus-encoded proteinase. Genes Dev 21, 1086–1097.[CrossRef]
    [Google Scholar]
  4. Altman, S., Wesolowski, D., Guerrier-Takada, C. & Li, Y. ( 2005; ). RNase P cleaves transient structures in some riboswitches. Proc Natl Acad Sci U S A 102, 11284–11289.[CrossRef]
    [Google Scholar]
  5. Alvarez, D. E., De Lella Ezcurra, A. L., Fucito, S. & Gamarnik, A. V. ( 2005; ). Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200–212.[CrossRef]
    [Google Scholar]
  6. Aminev, A. G., Amineva, S. P. & Palmenberg, A. C. ( 2003; ). Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res 95, 59–73.[CrossRef]
    [Google Scholar]
  7. Amineva, S. P., Aminev, A. G., Palmenberg, A. C. & Gern, J. E. ( 2004; ). Rhinovirus 3C protease precursors 3CD and 3CD′ localize to the nuclei of infected cells. J Gen Virol 85, 2969–2979.[CrossRef]
    [Google Scholar]
  8. Andreev, D. E., Fernandez-Miragall, O., Ramajo, J., Dmitriev, S. E., Terenin, I. M., Martinez-Salas, E. & Shatsky, I. N. ( 2007; ). Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA. RNA 13, 1366–1374.[CrossRef]
    [Google Scholar]
  9. Back, S. H., Kim, Y. K., Kim, W. J., Cho, S., Oh, H. R., Kim, J. E. & Jang, S. K. ( 2002; ). Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol 76, 2529–2542.[CrossRef]
    [Google Scholar]
  10. Baird, S. D., Turcotte, M., Korneluk, R. G. & Holcik, M. ( 2006; ). Searching for IRES. RNA 12, 1755–1785.[CrossRef]
    [Google Scholar]
  11. Baird, S. D., Lewis, S. M., Turcotte, M. & Holcik, M. ( 2007; ). A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Res 35, 4664–4677.[CrossRef]
    [Google Scholar]
  12. Balvay, L., Lopez Lastra, M., Sargueil, B., Darlix, J. L. & Ohlmann, T. ( 2007; ). Translational control of retroviruses. Nat Rev Microbiol 5, 128–140.[CrossRef]
    [Google Scholar]
  13. Battle, D. J., Kasim, M., Yong, J., Lotti, F., Lau, C. K., Mouaikel, J., Zhang, Z., Han, K., Wan, L. & Dreyfuss, G. ( 2006; ). The SMN complex: an assembly machine for RNPs. Cold Spring Harb Symp Quant Biol 71, 313–320.[CrossRef]
    [Google Scholar]
  14. Bedard, K. M., Daijogo, S. & Semler, B. L. ( 2007; ). A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J 26, 459–467.[CrossRef]
    [Google Scholar]
  15. Belsham, G. J. ( 1992; ). Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J 11, 1105–1110.
    [Google Scholar]
  16. Belsham, G. J. & Sonenberg, N. ( 2000; ). Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol 8, 330–335.[CrossRef]
    [Google Scholar]
  17. Blyn, L. B., Towner, J. S., Semler, B. L. & Ehrenfeld, E. ( 1997; ). Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol 71, 6243–6246.
    [Google Scholar]
  18. Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J. D. & Stark, H. ( 2005; ). Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13, 1695–1706.[CrossRef]
    [Google Scholar]
  19. Borman, A. M. & Kean, K. M. ( 1997; ). Intact eukaryotic initiation factor 4G is required for hepatitis A virus internal initiation of translation. Virology 237, 129–136.[CrossRef]
    [Google Scholar]
  20. Bradrick, S. S., Dobrikova, E. Y., Kaiser, C., Shveygert, M. & Gromeier, M. ( 2007; ). Poly(A)-binding protein is differentially required for translation mediated by viral internal ribosome entry sites. RNA 13, 1582–1593.[CrossRef]
    [Google Scholar]
  21. Bushell, M., Stoneley, M., Kong, Y. W., Hamilton, T. L., Spriggs, K. A., Dobbyn, H. C., Qin, X., Sarnow, P. & Willis, A. E. ( 2006; ). Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Mol Cell 23, 401–412.[CrossRef]
    [Google Scholar]
  22. Carrillo, C., Tulman, E. R., Delhon, G., Lu, Z., Carreno, A., Vagnozzi, A., Kutish, G. F. & Rock, D. L. ( 2005; ). Comparative genomics of foot-and-mouth disease virus. J Virol 79, 6487–6504.[CrossRef]
    [Google Scholar]
  23. Chard, L. S., Bordeleau, M. E., Pelletier, J., Tanaka, J. & Belsham, G. J. ( 2006a; ). Hepatitis C virus-related internal ribosome entry sites are found in multiple genera of the family Picornaviridae. J Gen Virol 87, 927–936.[CrossRef]
    [Google Scholar]
  24. Chard, L. S., Kaku, Y., Jones, B., Nayak, A. & Belsham, G. J. ( 2006b; ). Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. J Virol 80, 1271–1279.[CrossRef]
    [Google Scholar]
  25. Choi, K., Kim, J. H., Li, X., Paek, K. Y., Ha, S. H., Ryu, S. H., Wimmer, E. & Jang, S. K. ( 2004; ). Identification of cellular proteins enhancing activities of internal ribosomal entry sites by competition with oligodeoxynucleotides. Nucleic Acids Res 32, 1308–1317.[CrossRef]
    [Google Scholar]
  26. Clark, M. E. & Dasgupta, A. ( 1990; ). A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells. Mol Cell Biol 10, 5106–5113.
    [Google Scholar]
  27. Clark, A. T., Robertson, M. E., Conn, G. L. & Belsham, G. J. ( 2003; ). Conserved nucleotides within the J domain of the encephalomyocarditis virus internal ribosome entry site are required for activity and for interaction with eIF4G. J Virol 77, 12441–12449.[CrossRef]
    [Google Scholar]
  28. Cole, J. L. ( 2007; ). Activation of PKR: an open and shut case? Trends Biochem Sci 32, 57–62.[CrossRef]
    [Google Scholar]
  29. Costantino, D. & Kieft, J. S. ( 2005; ). A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA 11, 332–343.[CrossRef]
    [Google Scholar]
  30. Cuconati, A., Xiang, W., Lahser, F., Pfister, T. & Wimmer, E. ( 1998; ). A protein linkage map of the P2 nonstructural proteins of poliovirus. J Virol 72, 1297–1307.
    [Google Scholar]
  31. Davis, W. G., Blackwell, J. L., Shi, P. Y. & Brinton, M. A. ( 2007; ). Interaction between the cellular protein eEF1A and the 3′ terminal stem loop of the West Nile virus genomic RNA facilitates viral RNA minus strand synthesis. J Virol 81, 10172–10187.[CrossRef]
    [Google Scholar]
  32. De Nova-Ocampo, M., Villegas-Sepulveda, N. & del Angel, R. M. ( 2002; ). Translation elongation factor-1α, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology 295, 337–347.[CrossRef]
    [Google Scholar]
  33. Dobrikova, E., Florez, P., Bradrick, S. & Gromeier, M. ( 2003; ). Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3′ nontranslated region. Proc Natl Acad Sci U S A 100, 15125–15130.[CrossRef]
    [Google Scholar]
  34. Dobrikova, E. Y., Grisham, R. N., Kaiser, C., Lin, J. & Gromeier, M. ( 2006; ). Competitive translation efficiency at the picornavirus type 1 internal ribosome entry site facilitated by viral cis and trans factors. J Virol 80, 3310–3321.[CrossRef]
    [Google Scholar]
  35. Domingo, E., Escarmis, C., Martinez, M. A., Martinez-Salas, E. & Mateu, M. G. ( 1992; ). Foot-and-mouth disease virus populations are quasispecies. Curr Top Microbiol Immunol 176, 33–47.
    [Google Scholar]
  36. Dorner, A. J., Semler, B. L., Jackson, R. J., Hanecak, R., Duprey, E. & Wimmer, E. ( 1984; ). In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 50, 507–514.
    [Google Scholar]
  37. Du, Z., Ulyanov, N. B., Yu, J., Andino, R. & James, T. L. ( 2004; ). NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA. Biochemistry 43, 5757–5771.[CrossRef]
    [Google Scholar]
  38. Escarmis, C., Toja, M., Medina, M. & Domingo, E. ( 1992; ). Modifications of the 5′ untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture. Virus Res 26, 113–125.[CrossRef]
    [Google Scholar]
  39. Etchison, D., Milburn, S. C., Edery, I., Sonenberg, N. & Hershey, J. W. ( 1982; ). Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257, 14806–14810.
    [Google Scholar]
  40. Evans, D., Marquez, S. M. & Pace, N. R. ( 2006; ). RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 31, 333–341.[CrossRef]
    [Google Scholar]
  41. Falk, M. M., Grigera, P. R., Bergmann, I. E., Zibert, A., Multhaup, G. & Beck, E. ( 1990; ). Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol 64, 748–756.
    [Google Scholar]
  42. Fernandez-Miragall, O. & Martinez-Salas, E. ( 2003; ). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA 9, 1333–1344.[CrossRef]
    [Google Scholar]
  43. Fernandez-Miragall, O., Ramos, R., Ramajo, J. & Martinez-Salas, E. ( 2006; ). Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. RNA 12, 223–234.
    [Google Scholar]
  44. Filomatori, C. V., Lodeiro, M. F., Alvarez, D. E., Samsa, M. M., Pietrasanta, L. & Gamarnik, A. V. ( 2006; ). A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20, 2238–2249.[CrossRef]
    [Google Scholar]
  45. Fletcher, S. P. & Jackson, R. J. ( 2002; ). Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5′ untranslated region important for IRES function. J Virol 76, 5024–5033.[CrossRef]
    [Google Scholar]
  46. Florez de Sessions, P., Dobrikova, E. & Gromeier, M. ( 2007; ). Genetic adaptation to untranslated region-mediated enterovirus growth deficits by mutations in the nonstructural proteins 3AB and 3CD. J Virol 81, 8396–8405.[CrossRef]
    [Google Scholar]
  47. Foy, E., Li, K., Sumpter, R., Jr, Loo, Y. M., Johnson, C. L., Wang, C., Fish, P. M., Yoneyama, M., Fujita, T. & other authors ( 2005; ). Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc Natl Acad Sci U S A 102, 2986–2991.[CrossRef]
    [Google Scholar]
  48. Fraser, C. S. & Doudna, J. A. ( 2007; ). Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 5, 29–38.[CrossRef]
    [Google Scholar]
  49. Gamarnik, A. V. & Andino, R. ( 1997; ). Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3, 882–892.
    [Google Scholar]
  50. Gamarnik, A. V. & Andino, R. ( 1998; ). Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12, 2293–2304.[CrossRef]
    [Google Scholar]
  51. Garcia-Briones, M., Rosas, M. F., Gonzalez-Magaldi, M., Martin-Acebes, M. A., Sobrino, F. & Armas-Portela, R. ( 2006; ). Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology 349, 409–421.[CrossRef]
    [Google Scholar]
  52. Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A. & Sonenberg, N. ( 1996; ). Activation of the translational suppressor 4E–BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A 93, 5578–5583.[CrossRef]
    [Google Scholar]
  53. Glaser, W., Cencic, R. & Skern, T. ( 2001; ). Foot-and-mouth disease virus leader proteinase: involvement of C-terminal residues in self-processing and cleavage of eIF4GI. J Biol Chem 276, 35473–35481.[CrossRef]
    [Google Scholar]
  54. Gradi, A., Foeger, N., Strong, R., Svitkin, Y. V., Sonenberg, N., Skern, T. & Belsham, G. J. ( 2004; ). Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol 78, 3271–3278.[CrossRef]
    [Google Scholar]
  55. Grassmann, C. W., Yu, H., Isken, O. & Behrens, S. E. ( 2005; ). Hepatitis C virus and the related bovine viral diarrhea virus considerably differ in the functional organization of the 5′ non-translated region: implications for the viral life cycle. Virology 333, 349–366.[CrossRef]
    [Google Scholar]
  56. Groft, C. M. & Burley, S. K. ( 2002; ). Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell 9, 1273–1283.[CrossRef]
    [Google Scholar]
  57. Gromeier, M., Alexander, L. & Wimmer, E. ( 1996; ). Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 93, 2370–2375.[CrossRef]
    [Google Scholar]
  58. Groppelli, E., Belsham, G. J. & Roberts, L. O. ( 2007; ). Identification of minimal sequences of the Rhopalosiphum padi virus 5′ untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation systems. J Gen Virol 88, 1583–1588.[CrossRef]
    [Google Scholar]
  59. Groppo, R. & Palmenberg, A. C. ( 2007; ). Cardiovirus 2A protein associates with 40S but not 80S ribosome subunits during infection. J Virol 81, 13067–13074.[CrossRef]
    [Google Scholar]
  60. Guerrier-Takada, C., van Belkum, A., Pleij, C. W. & Altman, S. ( 1988; ). Novel reactions of RNAase P with a tRNA-like structure in turnip yellow mosaic virus RNA. Cell 53, 267–272.[CrossRef]
    [Google Scholar]
  61. He, Y., Yan, W., Coito, C., Li, Y., Gale, M., Jr & Katze, M. G. ( 2003; ). The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol 84, 535–543.[CrossRef]
    [Google Scholar]
  62. Hellen, C. U. & de Breyne, S. ( 2007; ). A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J Virol 81, 5850–5863.[CrossRef]
    [Google Scholar]
  63. Hellen, C. U. & Sarnow, P. ( 2001; ). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593–1612.[CrossRef]
    [Google Scholar]
  64. Hellen, C. U., Pestova, T. V. & Wimmer, E. ( 1994; ). Effect of mutations downstream of the internal ribosome entry site on initiation of poliovirus protein synthesis. J Virol 68, 6312–6322.
    [Google Scholar]
  65. Hernandez-Sanchez, C., Mansilla, A., de la Rosa, E. J., Pollerberg, G. E., Martinez-Salas, E. & de Pablo, F. ( 2003; ). Upstream AUGs in embryonic proinsulin mRNA control its low translation level. EMBO J 22, 5582–5592.[CrossRef]
    [Google Scholar]
  66. Herold, J. & Andino, R. ( 2001; ). Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol Cell 7, 581–591.[CrossRef]
    [Google Scholar]
  67. Hinnebusch, A. G. ( 2006; ). eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31, 553–562.[CrossRef]
    [Google Scholar]
  68. Hinton, T. M. & Crabb, B. S. ( 2001; ). The novel picornavirus Equine rhinitis B virus contains a strong type II internal ribosomal entry site which functions similarly to that of Encephalomyocarditis virus. J Gen Virol 82, 2257–2269.
    [Google Scholar]
  69. Honda, M., Ping, L. H., Rijnbrand, R. C., Amphlett, E., Clarke, B., Rowlands, D. & Lemon, S. M. ( 1996; ). Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology 222, 31–42.[CrossRef]
    [Google Scholar]
  70. Hunt, S. L., Hsuan, J. J., Totty, N. & Jackson, R. J. ( 1999; ). UNR, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev 13, 437–448.[CrossRef]
    [Google Scholar]
  71. Isken, O., Grassmann, C. W., Sarisky, R. T., Kann, M., Zhang, S., Grosse, F., Kao, P. N. & Behrens, S. E. ( 2003; ). Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. EMBO J 22, 5655–5665.[CrossRef]
    [Google Scholar]
  72. Isken, O., Grassmann, C. W., Yu, H. & Behrens, S. E. ( 2004; ). Complex signals in the genomic 3′ nontranslated region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA 10, 1637–1652.[CrossRef]
    [Google Scholar]
  73. Jackson, R. J. & Kaminski, A. ( 1995; ). Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000.
    [Google Scholar]
  74. Jan, E. ( 2006; ). Divergent IRES elements in invertebrates. Virus Res 119, 16–28.[CrossRef]
    [Google Scholar]
  75. Jan, E. & Sarnow, P. ( 2002; ). Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J Mol Biol 324, 889–902.[CrossRef]
    [Google Scholar]
  76. Jan, E., Kinzy, T. G. & Sarnow, P. ( 2003; ). Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis. Proc Natl Acad Sci U S A 100, 15410–15415.[CrossRef]
    [Google Scholar]
  77. Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C. & Wimmer, E. ( 1988; ). A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62, 2636–2643.
    [Google Scholar]
  78. Ji, H., Fraser, C. S., Yu, Y., Leary, J. & Doudna, J. A. ( 2004; ). Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc Natl Acad Sci U S A 101, 16990–16995.[CrossRef]
    [Google Scholar]
  79. Kaminski, A., Belsham, G. J. & Jackson, R. J. ( 1994; ). Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J 13, 1673–1681.
    [Google Scholar]
  80. Kanamori, Y. & Nakashima, N. ( 2001; ). A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA 7, 266–274.[CrossRef]
    [Google Scholar]
  81. Katze, M. G., He, Y. & Gale, M., Jr ( 2002; ). Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2, 675–687.[CrossRef]
    [Google Scholar]
  82. Kauder, S. E. & Racaniello, V. R. ( 2004; ). Poliovirus tropism and attenuation are determined after internal ribosome entry. J Clin Invest 113, 1743–1753.[CrossRef]
    [Google Scholar]
  83. Kieft, J. S., Zhou, K., Jubin, R., Murray, M. G., Lau, J. Y. & Doudna, J. A. ( 1999; ). The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol 292, 513–529.[CrossRef]
    [Google Scholar]
  84. Kieft, J. S., Zhou, K., Jubin, R. & Doudna, J. A. ( 2001; ). Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206.[CrossRef]
    [Google Scholar]
  85. Kieft, J. S., Zhou, K., Grech, A., Jubin, R. & Doudna, J. A. ( 2002; ). Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nat Struct Biol 9, 370–374.
    [Google Scholar]
  86. Kim, J. H., Paek, K. Y., Ha, S. H., Cho, S., Choi, K., Kim, C. S., Ryu, S. H. & Jang, S. K. ( 2004; ). A cellular RNA-binding protein enhances internal ribosomal entry site-dependent translation through an interaction downstream of the hepatitis C virus polyprotein initiation codon. Mol Cell Biol 24, 7878–7890.[CrossRef]
    [Google Scholar]
  87. Kolupaeva, V. G., Hellen, C. U. & Shatsky, I. N. ( 1996; ). Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. RNA 2, 1199–1212.
    [Google Scholar]
  88. Kolupaeva, V. G., Pestova, T. V., Hellen, C. U. & Shatsky, I. N. ( 1998; ). Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem 273, 18599–18604.[CrossRef]
    [Google Scholar]
  89. Kolupaeva, V. G., Pestova, T. V. & Hellen, C. U. ( 2000; ). An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J Virol 74, 6242–6250.[CrossRef]
    [Google Scholar]
  90. Kozak, M. ( 1989; ). The scanning model for translation: an update. J Cell Biol 108, 229–241.[CrossRef]
    [Google Scholar]
  91. Kuge, S., Kawamura, N. & Nomoto, A. ( 1989; ). Genetic variation occurring on the genome of an in vitro insertion mutant of poliovirus type 1. J Virol 63, 1069–1075.
    [Google Scholar]
  92. Kuyumcu-Martinez, N. M., Joachims, M. & Lloyd, R. E. ( 2002; ). Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease. J Virol 76, 2062–2074.[CrossRef]
    [Google Scholar]
  93. Kuyumcu-Martinez, N. M., Van Eden, M. E., Younan, P. & Lloyd, R. E. ( 2004; ). Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol Cell Biol 24, 1779–1790.[CrossRef]
    [Google Scholar]
  94. Laletina, E., Graifer, D., Malygin, A., Ivanov, A., Shatsky, I. & Karpova, G. ( 2006; ). Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit. Nucleic Acids Res 34, 2027–2036.[CrossRef]
    [Google Scholar]
  95. Lamphear, B. J., Yan, R., Yang, F., Waters, D., Liebig, H. D., Klump, H., Kuechler, E., Skern, T. & Rhoads, R. E. ( 1993; ). Mapping the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human Coxsackievirus and rhinovirus. J Biol Chem 268, 19200–19203.
    [Google Scholar]
  96. LeFebvre, A. K., Korneeva, N. L., Trutschl, M., Cvek, U., Duzan, R. D., Bradley, C. A., Hershey, J. W. & Rhoads, R. E. ( 2006; ). Translation initiation factor eIF4G–1 binds to eIF3 through the eIF3e subunit. J Biol Chem 281, 22917–22932.[CrossRef]
    [Google Scholar]
  97. Lerner, R. S. & Nicchitta, C. V. ( 2006; ). mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of cap-dependent translation. RNA 12, 775–789.[CrossRef]
    [Google Scholar]
  98. Li, Y. & Altman, S. ( 2003; ). A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc Natl Acad Sci U S A 100, 13213–13218.[CrossRef]
    [Google Scholar]
  99. Li, K., Foy, E., Ferreon, J. C., Nakamura, M., Ferreon, A. C., Ikeda, M., Ray, S. C., Gale, M., Jr & Lemon, S. M. ( 2005; ). Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 102, 2992–2997.[CrossRef]
    [Google Scholar]
  100. Lloyd, R. E. ( 2006; ). Translational control by viral proteinases. Virus Res 119, 76–88.[CrossRef]
    [Google Scholar]
  101. Locker, N., Easton, L. E. & Lukavsky, P. J. ( 2007; ). HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. EMBO J 26, 795–805.[CrossRef]
    [Google Scholar]
  102. Lomakin, I. B., Hellen, C. U. & Pestova, T. V. ( 2000; ). Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation. Mol Cell Biol 20, 6019–6029.[CrossRef]
    [Google Scholar]
  103. Lopez de Quinto, S. & Martinez-Salas, E. ( 1997; ). Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. J Virol 71, 4171–4175.
    [Google Scholar]
  104. Lopez de Quinto, S. & Martinez-Salas, E. ( 1999; ). Involvement of the aphthovirus RNA region located between the two functional AUGs in start codon selection. Virology 255, 324–336.[CrossRef]
    [Google Scholar]
  105. Lopez de Quinto, S. & Martinez-Salas, E. ( 2000; ). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6, 1380–1392.[CrossRef]
    [Google Scholar]
  106. Lopez de Quinto, S., Lafuente, E. & Martinez-Salas, E. ( 2001; ). IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7, 1213–1226.[CrossRef]
    [Google Scholar]
  107. Lopez de Quinto, S., Saiz, M., de la Morena, D., Sobrino, F. & Martinez-Salas, E. ( 2002; ). IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly(A) sequences. Nucleic Acids Res 30, 4398–4405.[CrossRef]
    [Google Scholar]
  108. Lu, H., Li, W., Noble, W. S., Payan, D. & Anderson, D. C. ( 2004; ). Riboproteomics of the hepatitis C virus internal ribosomal entry site. J Proteome Res 3, 949–957.[CrossRef]
    [Google Scholar]
  109. Lukavsky, P. J., Otto, G. A., Lancaster, A. M., Sarnow, P. & Puglisi, J. D. ( 2000; ). Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat Struct Biol 7, 1105–1110.[CrossRef]
    [Google Scholar]
  110. Luz, N. & Beck, E. ( 1991; ). Interaction of a cellular 57-kilodalton protein with the internal translation initiation site of foot-and-mouth disease virus. J Virol 65, 6486–6494.
    [Google Scholar]
  111. Lyons, A. J. & Robertson, H. D. ( 2003; ). Detection of tRNA-like structure through RNase P cleavage of viral internal ribosome entry site RNAs near the AUG start triplet. J Biol Chem 278, 26844–26850.[CrossRef]
    [Google Scholar]
  112. Malnou, C. E., Poyry, T. A., Jackson, R. J. & Kean, K. M. ( 2002; ). Poliovirus internal ribosome entry segment structure alterations that specifically affect function in neuronal cells: molecular genetic analysis. J Virol 76, 10617–10626.[CrossRef]
    [Google Scholar]
  113. Martinez-Salas, E. ( 1999; ). Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 10, 458–464.[CrossRef]
    [Google Scholar]
  114. Martinez-Salas, E. & Fernandez-Miragall, O. ( 2004; ). Picornavirus IRES: structure function relationship. Curr Pharm Des 10, 3757–3767.[CrossRef]
    [Google Scholar]
  115. Martinez-Salas, E., Ramos, R., Lafuente, E. & Lopez de Quinto, S. ( 2001; ). Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 82, 973–984.
    [Google Scholar]
  116. Martinez-Salas, E., Lopez de Quinto, S., Ramos, R. & Fernandez-Miragall, O. ( 2002; ). IRES elements: features of the RNA structure contributing to their activity. Biochimie 84, 755–763.[CrossRef]
    [Google Scholar]
  117. McCaffrey, A. P., Ohashi, K., Meuse, L., Shen, S., Lancaster, A. M., Lukavsky, P. J., Sarnow, P. & Kay, M. A. ( 2002; ). Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. Mol Ther 5, 676–684.[CrossRef]
    [Google Scholar]
  118. Medina, M., Domingo, E., Brangwyn, J. K. & Belsham, G. J. ( 1993; ). The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194, 355–359.[CrossRef]
    [Google Scholar]
  119. Meerovitch, K., Svitkin, Y. V., Lee, H. S., Lejbkowicz, F., Kenan, D. J., Chan, E. K., Agol, V. I., Keene, J. D. & Sonenberg, N. ( 1993; ). La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67, 3798–3807.
    [Google Scholar]
  120. Merrick, W. C. ( 2004; ). Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1–11.[CrossRef]
    [Google Scholar]
  121. Merrill, M. K. & Gromeier, M. ( 2006; ). The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J Virol 80, 6936–6942.[CrossRef]
    [Google Scholar]
  122. Merrill, M. K., Dobrikova, E. Y. & Gromeier, M. ( 2006; ). Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol 80, 3147–3156.[CrossRef]
    [Google Scholar]
  123. Meylan, E. & Tschopp, J. ( 2006; ). Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 22, 561–569.[CrossRef]
    [Google Scholar]
  124. Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R. & Tschopp, J. ( 2005; ). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172.[CrossRef]
    [Google Scholar]
  125. Michel, Y. M., Borman, A. M., Paulous, S. & Kean, K. M. ( 2001; ). Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation. Mol Cell Biol 21, 4097–4109.[CrossRef]
    [Google Scholar]
  126. Miller, W. A. & White, K. A. ( 2006; ). Long-distance RNA-RNA interactions in plant virus gene expression and replication. Annu Rev Phytopathol 44, 447–467.[CrossRef]
    [Google Scholar]
  127. Mitchell, S. A., Spriggs, K. A., Coldwell, M. J., Jackson, R. J. & Willis, A. E. ( 2003; ). The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell 11, 757–771.[CrossRef]
    [Google Scholar]
  128. Monie, T. P., Perrin, A. J., Birtley, J. R., Sweeney, T. R., Karakasiliotis, I., Chaudhry, Y., Roberts, L. O., Matthews, S., Goodfellow, I. G. & Curry, S. ( 2007; ). Structural insights into the transcriptional and translational roles of Ebp1. EMBO J 26, 3936–3944.[CrossRef]
    [Google Scholar]
  129. Nadal, A., Martell, M., Lytle, J. R., Lyons, A. J., Robertson, H. D., Cabot, B., Esteban, J. I., Esteban, R., Guardia, J. & Gomez, J. ( 2002; ). Specific cleavage of hepatitis C virus RNA genome by human RNase P. J Biol Chem 277, 30606–30613.[CrossRef]
    [Google Scholar]
  130. Nateri, A. S., Hughes, P. J. & Stanway, G. ( 2000; ). In vivo and in vitro identification of structural and sequence elements of the human parechovirus 5′ untranslated region required for internal initiation. J Virol 74, 6269–6277.[CrossRef]
    [Google Scholar]
  131. Nicholson, R., Pelletier, J., Le, S. Y. & Sonenberg, N. ( 1991; ). Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J Virol 65, 5886–5894.
    [Google Scholar]
  132. Nishiyama, T., Yamamoto, H., Shibuya, N., Hatakeyama, Y., Hachimori, A., Uchiumi, T. & Nakashima, N. ( 2003; ). Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res 31, 2434–2442.[CrossRef]
    [Google Scholar]
  133. Nishiyama, T., Yamamoto, H., Uchiumi, T. & Nakashima, N. ( 2007; ). Eukaryotic ribosomal protein RPS25 interacts with the conserved loop region in a dicistroviral intergenic internal ribosome entry site. Nucleic Acids Res 35, 1514–1521.[CrossRef]
    [Google Scholar]
  134. Novak, J. E. & Kirkegaard, K. ( 1994; ). Coupling between genome translation and replication in an RNA virus. Genes Dev 8, 1726–1737.[CrossRef]
    [Google Scholar]
  135. Otto, G. A. & Puglisi, J. D. ( 2004; ). The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380.[CrossRef]
    [Google Scholar]
  136. Pause, A., Methot, N., Svitkin, Y., Merrick, W. C. & Sonenberg, N. ( 1994; ). Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 13, 1205–1215.
    [Google Scholar]
  137. Pelletier, J. & Sonenberg, N. ( 1988; ). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.[CrossRef]
    [Google Scholar]
  138. Pelletier, J., Kaplan, G., Racaniello, V. R. & Sonenberg, N. ( 1988; ). Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5′ noncoding region. Mol Cell Biol 8, 1103–1112.
    [Google Scholar]
  139. Perera, R., Daijogo, S., Walter, B. L., Nguyen, J. H. & Semler, B. L. ( 2007; ). Cellular protein modification by poliovirus: the two faces of Poly(rC)-binding protein. J Virol 81, 8919–8932.[CrossRef]
    [Google Scholar]
  140. Pestova, T. V. & Hellen, C. U. ( 2003; ). Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev 17, 181–186.[CrossRef]
    [Google Scholar]
  141. Pestova, T. V., Hellen, C. U. & Shatsky, I. N. ( 1996; ). Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 16, 6859–6869.
    [Google Scholar]
  142. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. ( 1998; ). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12, 67–83.[CrossRef]
    [Google Scholar]
  143. Pestova, T. V., Kolupaeva, V. G., Lomakin, I. B., Pilipenko, E. V., Shatsky, I. N., Agol, V. I. & Hellen, C. U. ( 2001; ). Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 98, 7029–7036.[CrossRef]
    [Google Scholar]
  144. Pfingsten, J. S., Costantino, D. A. & Kieft, J. S. ( 2006; ). Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science 314, 1450–1454.[CrossRef]
    [Google Scholar]
  145. Pfingsten, J. S., Costantino, D. A. & Kieft, J. S. ( 2007; ). Conservation and diversity among the three-dimensional folds of the Dicistroviridae intergenic region IRESes. J Mol Biol 370, 856–869.[CrossRef]
    [Google Scholar]
  146. Phelan, M., Banks, R. J., Conn, G. & Ramesh, V. ( 2004; ). NMR studies of the structure and Mg2+ binding properties of a conserved RNA motif of EMCV picornavirus IRES element. Nucleic Acids Res 32, 4715–4724.[CrossRef]
    [Google Scholar]
  147. Pilipenko, E. V., Blinov, V. M., Romanova, L. I., Sinyakov, A. N., Maslova, S. V. & Agol, V. I. ( 1989; ). Conserved structural domains in the 5′-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology 168, 201–209.[CrossRef]
    [Google Scholar]
  148. Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Svitkin, Y. V., Sinyakov, A. N. & Agol, V. I. ( 1992; ). Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68, 119–131.[CrossRef]
    [Google Scholar]
  149. Pilipenko, E. V., Pestova, T. V., Kolupaeva, V. G., Khitrina, E. V., Poperechnaya, A. N., Agol, V. I. & Hellen, C. U. ( 2000; ). A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14, 2028–2045.
    [Google Scholar]
  150. Pilipenko, E. V., Viktorova, E. G., Guest, S. T., Agol, V. I. & Roos, R. P. ( 2001; ). Cell-specific proteins regulate viral RNA translation and virus-induced disease. EMBO J 20, 6899–6908.[CrossRef]
    [Google Scholar]
  151. Piron, M., Vende, P., Cohen, J. & Poncet, D. ( 1998; ). Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17, 5811–5821.[CrossRef]
    [Google Scholar]
  152. Piron, M., Beguiristain, N., Nadal, A., Martinez-Salas, E. & Gomez, J. ( 2005; ). Characterizing the function and structural organization of the 5′ tRNA-like motif within the hepatitis C virus quasispecies. Nucleic Acids Res 33, 1487–1502.[CrossRef]
    [Google Scholar]
  153. Pisarev, A. V., Chard, L. S., Kaku, Y., Johns, H. L., Shatsky, I. N. & Belsham, G. J. ( 2004; ). Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol 78, 4487–4497.[CrossRef]
    [Google Scholar]
  154. Rakotondrafara, A. M., Polacek, C., Harris, E. & Miller, W. A. ( 2006; ). Oscillating kissing stem-loop interactions mediate 5′ scanning-dependent translation by a viral 3′-cap-independent translation element. RNA 12, 1893–1906.[CrossRef]
    [Google Scholar]
  155. Ramos, R. & Martinez-Salas, E. ( 1999; ). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5, 1374–1383.[CrossRef]
    [Google Scholar]
  156. Rassmann, A., Henke, A., Zobawa, M., Carlsohn, M., Saluz, H. P., Grabley, S., Lottspeich, F. & Munder, T. ( 2006; ). Proteome alterations in human host cells infected with coxsackievirus B3. J Gen Virol 87, 2631–2638.[CrossRef]
    [Google Scholar]
  157. Reigadas, S., Pacheco, A., Ramajo, J., de Quinto, S. L. & Martinez-Salas, E. ( 2005; ). Specific interference between two unrelated internal ribosome entry site elements impairs translation efficiency. FEBS Lett 579, 6803–6808.[CrossRef]
    [Google Scholar]
  158. Reynolds, J. E., Kaminski, A., Kettinen, H. J., Grace, K., Clarke, B. E., Carroll, A. R., Rowlands, D. J. & Jackson, R. J. ( 1995; ). Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14, 6010–6020.
    [Google Scholar]
  159. Rijnbrand, R., van der Straaten, T., van Rijn, P. A., Spaan, W. J. & Bredenbeek, P. J. ( 1997; ). Internal entry of ribosomes is directed by the 5′ noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol 71, 451–457.
    [Google Scholar]
  160. Rijnbrand, R., Abell, G. & Lemon, S. M. ( 2000; ). Mutational analysis of the GB virus B internal ribosome entry site. J Virol 74, 773–783.[CrossRef]
    [Google Scholar]
  161. Rijnbrand, R., Thiviyanathan, V., Kaluarachchi, K., Lemon, S. M. & Gorenstein, D. G. ( 2004; ). Mutational and structural analysis of stem-loop IIIC of the hepatitis C virus and GB virus B internal ribosome entry sites. J Mol Biol 343, 805–817.[CrossRef]
    [Google Scholar]
  162. Robertson, M. E., Seamons, R. A. & Belsham, G. J. ( 1999; ). A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5, 1167–1179.[CrossRef]
    [Google Scholar]
  163. Rodriguez Pulido, M., Serrano, P., Saiz, M. & Martinez-Salas, E. ( 2007; ). Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a,b, and PABP RNA-binding proteins. Virology 364, 466–474.[CrossRef]
    [Google Scholar]
  164. Rohll, J. B., Moon, D. H., Evans, D. J. & Almond, J. W. ( 1995; ). The 3′ untranslated region of picornavirus RNA: features required for efficient genome replication. J Virol 69, 7835–7844.
    [Google Scholar]
  165. Sabariegos, R., Nadal, A., Beguiristain, N., Piron, M. & Gomez, J. ( 2004; ). Catalytic RNase P RNA from Synechocystis sp. cleaves the hepatitis C virus RNA near the AUG start codon. FEBS Lett 577, 517–522.[CrossRef]
    [Google Scholar]
  166. Saiz, M., Gomez, S., Martinez-Salas, E. & Sobrino, F. ( 2001; ). Deletion or substitution of the aphthovirus 3′ NCR abrogates infectivity and virus replication. J Gen Virol 82, 93–101.
    [Google Scholar]
  167. Sarnow, P. ( 2003; ). Viral internal ribosome entry site elements: novel ribosome-RNA complexes and roles in viral pathogenesis. J Virol 77, 2801–2806.[CrossRef]
    [Google Scholar]
  168. Sasaki, J. & Nakashima, N. ( 1999; ). Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. J Virol 73, 1219–1226.
    [Google Scholar]
  169. Schuler, M., Connell, S. R., Lescoute, A., Giesebrecht, J., Dabrowski, M., Schroeer, B., Mielke, T., Penczek, P. A., Westhof, E. & Spahn, C. M. ( 2006; ). Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol 13, 1092–1096.[CrossRef]
    [Google Scholar]
  170. Serrano, P., Pulido, M. R., Saiz, M. & Martinez-Salas, E. ( 2006; ). The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA–RNA interactions with the 5′ end region. J Gen Virol 87, 3013–3022.[CrossRef]
    [Google Scholar]
  171. Serrano, P., Gomez, J. & Martinez-Salas, E. ( 2007; ). Characterization of a cyanobacterial RNase P ribozyme recognition motif in the IRES of foot-and-mouth disease virus reveals a unique structural element. RNA 13, 849–859.[CrossRef]
    [Google Scholar]
  172. Sharma, R., Raychaudhuri, S. & Dasgupta, A. ( 2004; ). Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320, 195–205.[CrossRef]
    [Google Scholar]
  173. Shen, R. & Miller, W. A. ( 2007; ). Structures required for poly(A) tail-independent translation overlap with, but are distinct from, cap-independent translation and RNA replication signals at the 3′ end of Tobacco necrosis virus RNA. Virology 358, 448–458.[CrossRef]
    [Google Scholar]
  174. Shibuya, N. & Nakashima, N. ( 2006; ). Characterization of the 5′ internal ribosome entry site of Plautia stali intestine virus. J Gen Virol 87, 3679–3686.[CrossRef]
    [Google Scholar]
  175. Sonenberg, N. & Dever, T. E. ( 2003; ). Eukaryotic translation initiation factors and regulators. Curr Opin Struct Biol 13, 56–63.[CrossRef]
    [Google Scholar]
  176. Song, Y., Friebe, P., Tzima, E., Junemann, C., Bartenschlager, R. & Niepmann, M. ( 2006; ). The hepatitis C virus RNA 3′-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol 80, 11579–11588.[CrossRef]
    [Google Scholar]
  177. Spahn, C. M., Kieft, J. S., Grassucci, R. A., Penczek, P. A., Zhou, K., Doudna, J. A. & Frank, J. ( 2001; ). Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1959–1962.[CrossRef]
    [Google Scholar]
  178. Spahn, C. M., Jan, E., Mulder, A., Grassucci, R. A., Sarnow, P. & Frank, J. ( 2004; ). Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 118, 465–475.[CrossRef]
    [Google Scholar]
  179. Stoneley, M. & Willis, A. E. ( 2004; ). Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200–3207.[CrossRef]
    [Google Scholar]
  180. Strong, R. & Belsham, G. J. ( 2004; ). Sequential modification of translation initiation factor eIF4GI by two different foot-and-mouth disease virus proteases within infected baby hamster kidney cells: identification of the 3Cpro cleavage site. J Gen Virol 85, 2953–2962.[CrossRef]
    [Google Scholar]
  181. Svitkin, Y. V., Hahn, H., Gingras, A. C., Palmenberg, A. C. & Sonenberg, N. ( 1998; ). Rapamycin and wortmannin enhance replication of a defective encephalomyocarditis virus. J Virol 72, 5811–5819.
    [Google Scholar]
  182. Svitkin, Y. V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G. J. & Sonenberg, N. ( 2001; ). The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394.[CrossRef]
    [Google Scholar]
  183. Svitkin, Y. V., Herdy, B., Costa-Mattioli, M., Gingras, A. C., Raught, B. & Sonenberg, N. ( 2005; ). Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 25, 10556–10565.[CrossRef]
    [Google Scholar]
  184. Terenin, I. M., Dmitriev, S. E., Andreev, D. E., Royall, E., Belsham, G. J., Roberts, L. O. & Shatsky, I. N. ( 2005; ). A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol Cell Biol 25, 7879–7888.[CrossRef]
    [Google Scholar]
  185. Toyoda, H., Franco, D., Fujita, K., Paul, A. V. & Wimmer, E. ( 2007; ). Replication of poliovirus requires binding of the poly(rC) binding protein to the cloverleaf as well as to the adjacent C-rich spacer sequence between the cloverleaf and the internal ribosomal entry site. J Virol 81, 10017–10028.[CrossRef]
    [Google Scholar]
  186. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. ( 1992; ). Internal ribosome entry site within hepatitis C virus RNA. J Virol 66, 1476–1483.
    [Google Scholar]
  187. van Ooij, M. J., Glaudemans, D. H., Heus, H. A., van Kuppeveld, F. J. & Melchers, W. J. ( 2006; ). Structural and functional integrity of the coxsackievirus B3 oriR: spacing between coaxial RNA helices. J Gen Virol 87, 689–695.[CrossRef]
    [Google Scholar]
  188. Vende, P., Piron, M., Castagne, N. & Poncet, D. ( 2000; ). Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74, 7064–7071.[CrossRef]
    [Google Scholar]
  189. Vitour, D., Lindenbaum, P., Vende, P., Becker, M. M. & Poncet, D. ( 2004; ). RoXaN, a novel cellular protein containing TPR, LD, and zinc finger motifs, forms a ternary complex with eukaryotic initiation factor 4G and rotavirus NSP3. J Virol 78, 3851–3862.[CrossRef]
    [Google Scholar]
  190. Walter, B. L., Nguyen, J. H., Ehrenfeld, E. & Semler, B. L. ( 1999; ). Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5, 1570–1585.[CrossRef]
    [Google Scholar]
  191. Wang, C., Le, S. Y., Ali, N. & Siddiqui, A. ( 1995; ). An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5′ noncoding region. RNA 1, 526–537.
    [Google Scholar]
  192. Wilson, J. E., Pestova, T. V., Hellen, C. U. & Sarnow, P. ( 2000a; ). Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520.[CrossRef]
    [Google Scholar]
  193. Wilson, J. E., Powell, M. J., Hoover, S. E. & Sarnow, P. ( 2000b; ). Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol 20, 4990–4999.[CrossRef]
    [Google Scholar]
  194. Witherell, G. W. & Wimmer, E. ( 1994; ). Encephalomyocarditis virus internal ribosomal entry site RNA-protein interactions. J Virol 68, 3183–3192.
    [Google Scholar]
  195. Woolaway, K. E., Lazaridis, K., Belsham, G. J., Carter, M. J. & Roberts, L. O. ( 2001; ). The 5′ untranslated region of Rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant, and insect translation systems. J Virol 75, 10244–10249.[CrossRef]
    [Google Scholar]
  196. Yalamanchili, P., Harris, K., Wimmer, E. & Dasgupta, A. ( 1996; ). Inhibition of basal transcription by poliovirus: a virus-encoded protease (3Cpro) inhibits formation of TBP-TATA box complex in vitro. J Virol 70, 2922–2929.
    [Google Scholar]
  197. Yamasaki, K., Weihl, C. C. & Roos, R. P. ( 1999; ). Alternative translation initiation of Theiler's murine encephalomyelitis virus. J Virol 73, 8519–8526.
    [Google Scholar]
  198. Yu, Y., Ji, H., Doudna, J. A. & Leary, J. A. ( 2005; ). Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCV IRES-bound complexes. Protein Sci 14, 1438–1446.
    [Google Scholar]
  199. Ziegler, E., Borman, A. M., Kirchweger, R., Skern, T. & Kean, K. M. ( 1995; ). Foot-and-mouth disease virus Lb proteinase can stimulate rhinovirus and enterovirus IRES-driven translation and cleave several proteins of cellular and viral origin. J Virol 69, 3465–3474.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83426-0
Loading
/content/journal/jgv/10.1099/vir.0.83426-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error