1887

Abstract

Rodent brain-adapted measles virus (MV) strains, such as CAM/RB and recombinant MVs based on the Edmonston strain containing the haemagglutinin (H) of CAM/RB, cause acute encephalitis after intracerebral infection of newborn rodents. We have demonstrated that rodent neurovirulence is modulated by two mutations at amino acid positions 195 and 200 in the H protein, one of these positions (200) being a potential glycosylation site. In order to analyse the effects of specific amino acids at these positions, we introduced a range of individual and combined mutations into the open reading frame of the H gene to generate a number of eukaryotic expression plasmids. The functionality of the mutant H proteins was assessed in transfected cells and by generating recombinant viruses. Interestingly, viruses caused acute encephalitis only if the amino acid Ser at position 200 was coupled with Gly at position 195, whereas viruses with single or combined mutations at these positions, including glycosylation at position 200, were attenuated. Neurovirulence was associated with virus spread and induction of neuronal apoptosis, whereas attenuated viruses failed to infect brain cells. Similar results were obtained by using primary brain-cell cultures. Our findings indicate that a structural alteration in the stem 2 region of the H protein at position 195 or 200 interferes with infectivity of rodent neurons, and suggest that the interaction of the viral attachment protein with cellular receptors on neurons is affected.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83235-0
2007-11-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3112.html?itemId=/content/journal/jgv/10.1099/vir.0.83235-0&mimeType=html&fmt=ahah

References

  1. Allen, I. V., McQuaid, S., McMahon, J., Kirk, J. & McConnell, R. ( 1996; ). The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55, 471–480.[CrossRef]
    [Google Scholar]
  2. Baczko, K., Liebert, U. G., Billeter, M., Cattaneo, R., Budka, H. & ter Meulen, V. ( 1986; ). Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis. J Virol 59, 472–478.
    [Google Scholar]
  3. Barrett, T., Visser, I. K., Mamaev, L., Goatley, L., van Bressem, M. F. & Osterhaus, A. D. ( 1993; ). Dolphin and porpoise morbilliviruses are genetically distinct from phocine distemper virus. Virology 193, 1010–1012.[CrossRef]
    [Google Scholar]
  4. Bigner, D. D., Bigner, S. H., Ponten, J., Westermark, M. S., Mahaley, E., Ruoslahti, H., Herschman, H., Eng, L. F. & Wikstrand, C. J. ( 1981; ). Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol 40, 201–229.[CrossRef]
    [Google Scholar]
  5. Buchholz, C. J., Schneider, U., Devaux, P., Gerlier, D. & Cattaneo, R. ( 1996; ). Cell entry by measles virus: long hybrid receptors uncouple binding from membrane fusion. J Virol 70, 3716–3723.
    [Google Scholar]
  6. Cathomen, T., Mrkic, B., Spehner, D., Drillien, R., Naef, R., Pavlovic, J., Aguzzi, A., Billeter, M. A. & Cattaneo, R. ( 1998; ). A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17, 3899–3908.[CrossRef]
    [Google Scholar]
  7. Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305.[CrossRef]
    [Google Scholar]
  8. Duprex, W. P., McQuaid, S., Hangartner, L., Billeter, M. A. & Rima, B. K. ( 1999a; ). Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73, 9568–9575.
    [Google Scholar]
  9. Duprex, W. P., Duffy, I., McQuaid, S., Hamill, L., Schneider-Schaulies, J., Cosby, L., Billeter, M., ter Meulen, V. & Rima, B. ( 1999b; ). The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. J Virol 73, 6916–6922.
    [Google Scholar]
  10. Duprex, W. P., McQuaid, S., Rosic-Mrkic, B., Cattaneo, R., McCallister, C. & Rima, B. K. ( 2000; ). In vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Virol 74, 7972–7979.[CrossRef]
    [Google Scholar]
  11. Edwards, A. D., Yue, X., Cox, P., Hope, P. L., Azzopardi, D. V., Squier, M. V. & Mehmet, H. ( 1997; ). Apoptosis in the brains of infants suffering intrauterine cerebral injury. Pediatr Res 42, 684–689.[CrossRef]
    [Google Scholar]
  12. Ehrengruber, M. U., Ehler, E., Billeter, M. & Naim, H. Y. ( 2002; ). Measles virus spreads in rat hippocampal neurons by cell-to-cell contact and in a polarized fashion. J Virol 76, 5720–5728.[CrossRef]
    [Google Scholar]
  13. Erlenhoefer, C., Wurzer, W. J., Löffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus, but is not involved in viral contact-mediated proliferation inhibition. J Virol 75, 4499–4505.[CrossRef]
    [Google Scholar]
  14. Evlashev, A., Moyse, E., Valentin, H., Azocar, O., Trescol-Biemont, M.-C., Marie, J. C., Rabourdin-Combe, C. & Horvat, B. ( 2000; ). Productive measles virus brain infection and apoptosis in CD46 transgenic mice. J Virol 74, 1373–1382.[CrossRef]
    [Google Scholar]
  15. Hsu, E. C., Iorio, C., Sarangi, F., Khine, A. A. & Richardson, C. D. ( 2001; ). CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9–21.[CrossRef]
    [Google Scholar]
  16. Langedijk, J. P. M., Daus, F. J. & van Oirschot, J. T. ( 1997; ). Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J Virol 71, 6155–6167.
    [Google Scholar]
  17. Lawrence, D. M. P., Patterson, C. E., Gales, T. L., D'Orazio, J. L., Vaughn, M. M. & Rall, G. F. ( 2000; ). Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74, 1908–1918.[CrossRef]
    [Google Scholar]
  18. Liebert, U. G., Flanagan, S. G., Löffler, S., Baczko, K., ter Meulen, V. & Rima, B. K. ( 1994; ). Antigenic determinants of measles virus hemagglutinin associated with neurovirulence. J Virol 68, 1486–1493.
    [Google Scholar]
  19. Makhortova, N. R., Askovich, P., Patterson, C. E., Gechman, L. A., Gerard, N. P. & Rall, G. F. ( 2007; ). Neurokinin-1 enables measles virus trans-synaptic spread in neurons. Virology 362, 235–244.[CrossRef]
    [Google Scholar]
  20. Masse, N., Ainouze, M., Neel, B., Wild, T. F., Buckland, R. & Langedijk, J. P. ( 2004; ). Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J Virol 78, 9051–9063.[CrossRef]
    [Google Scholar]
  21. McQuaid, S., Campbell, S., Wallace, I. J., Kirk, J. & Cosby, S. L. ( 1998; ). Measles virus infection and replication in undifferentiated and differentiated human neuronal cells in culture. J Virol 72, 5245–5250.
    [Google Scholar]
  22. Meissner, N. N. & Koschel, K. ( 1995; ). Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. J Virol 69, 5191–5194.
    [Google Scholar]
  23. Moeller, K., Duffy, I., Duprex, P., Rima, B., Beschorner, R., Fauser, S., Meyermann, R., Niewiesk, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 75, 7612–7620.[CrossRef]
    [Google Scholar]
  24. Mrkic, B., Pavlovic, J., Rulicke, T., Volpe, P., Buchholz, C. J., Hourcade, D., Atkinson, J. P., Aguzzi, A. & Cattaneo, R. ( 1998; ). Measles virus spread and pathogenesis in genetically modified mice. J Virol 72, 7420–7427.
    [Google Scholar]
  25. Nakajima, W., Ishida, A., Lange, M. S., Gabrielson, K. L., Wilson, M. A., Martin, L. J., Blue, M. E. & Johnston, M. V. ( 2000; ). Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 20, 7994–8004.
    [Google Scholar]
  26. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67, 6025–6032.
    [Google Scholar]
  27. Plemper, R. K., Hammond, A. L. & Cattaneo, R. ( 2000; ). Characterization of a region of the measles virus hemagglutinin sufficient for its dimerization. J Virol 74, 6485–6493.[CrossRef]
    [Google Scholar]
  28. Rall, G. F., Manchester, M., Daniels, L. R., Callahan, E. M., Belman, A. R. & Oldstone, M. B. ( 1997; ). A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci U S A 94, 4659–4663.[CrossRef]
    [Google Scholar]
  29. Schubert, S., Möller-Ehrlich, K., Singethan, K., Wiese, S., Duprex, W. P., Rima, B. K., Niewiesk, S. & Schneider-Schaulies, J. ( 2006; ). A mouse model of persistent brain infection with recombinant measles virus. J Gen Virol 87, 2011–2019.[CrossRef]
    [Google Scholar]
  30. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  31. ter Meulen, V., Löffler, S., Carter, M. J. & Stephenson, J. R. ( 1981; ). Antigenic characterization of measles and SSPE virus haemagglutinin by monoclonal antibodies. J Gen Virol 57, 357–364.[CrossRef]
    [Google Scholar]
  32. Urbanska, E. M., Chambers, B. J., Ljunggren, H. G., Norrby, E. & Kristensson, K. ( 1997; ). Spread of measles virus through axonal pathways into limbic structures in the brain of TAP −/− mice. J Med Virol 52, 362–369.[CrossRef]
    [Google Scholar]
  33. Vongpunsawad, S., Oezgun, N., Braun, W. & Cattaneo, R. ( 2004; ). Selectively receptor-blind measles viruses: Identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78, 302–313.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83235-0
Loading
/content/journal/jgv/10.1099/vir.0.83235-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error