1887

Abstract

Potato virus A (PVA; genus ) was used for virus-induced gene silencing in a model system that included transgenic (line 16c) expressing the transgene for green fluorescent protein (GFP) and chimeric PVA (PVA–GFP) carrying in the P1-encoding region. Infection of the 16c plants with PVA–GFP in five experiments resulted in a reproducible pattern of systemic transgene silencing, despite the presence of the strong silencing-suppressor protein, HC-Pro, produced by the virus. PVA–GFP was also targeted by silencing, and virus-specific short interfering RNA accumulated from the length of the viral genome. Viral deletion mutants lacking the insert appeared in systemically infected leaves and reversed silencing of the transgene in limited areas. However, systemic silencing continued in newly emerging leaves in the absence of the -carrying virus, which implicated a systemic silencing signal that moved from lower leaves without interference by HC-Pro. Use of GFP as a visual marker revealed a novel, mosaic-like recovery phenotype in the top leaves. The leaf areas appearing red or purple under UV light (no GFP expression) contained little PVA and mRNA, and corresponded to the dark-green islands observed under visible light. The surrounding green fluorescent tissues contained actively replicating viral deletion mutants that suppressed GFP silencing. Taken together, systemic progression of gene silencing and antiviral defence (RNA silencing) and circumvention of the silencing by the virus could be visualized and analysed in a novel manner.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82928-0
2007-08-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2337.html?itemId=/content/journal/jgv/10.1099/vir.0.82928-0&mimeType=html&fmt=ahah

References

  1. Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H. & Vance, V. B. ( 1998; ). A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A 95, 13079–13084.[CrossRef]
    [Google Scholar]
  2. Barajas, D., Tenllado, F. & Diaz-Ruiz, J. R. ( 2006; ). Characterization of the recombinant forms arising from a potato virus X chimeric virus infection under RNA silencing pressure. Mol Plant Microbe Interact 19, 904–913.[CrossRef]
    [Google Scholar]
  3. Baulcombe, D. C. ( 1999; ). Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2, 109–113.[CrossRef]
    [Google Scholar]
  4. Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W. & Baulcombe, D. C. ( 1998; ). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17, 6739–6746.[CrossRef]
    [Google Scholar]
  5. Dalmay, T., Hamilton, A., Mueller, E. & Baulcombe, D. C. ( 2000a; ). Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell 12, 369–379.[CrossRef]
    [Google Scholar]
  6. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. ( 2000b; ). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553.[CrossRef]
    [Google Scholar]
  7. Dougherty, W. G., Lindbo, J. A., Smith, H. A., Parks, T. D., Swaney, S. & Proebsting, W. M. ( 1994; ). RNA-mediated virus-resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol Plant Microbe Interact 7, 544–552.
    [Google Scholar]
  8. Dunoyer, P., Himber, C. & Voinnet, O. ( 2006; ). Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38, 258–263.[CrossRef]
    [Google Scholar]
  9. Fusaro, A. F., Matthew, L., Smith, N. A., Curtin, S. J., Dedic-Hagan, J., Ellacott, G. A., Watson, J. M., Wang, M. B., Brosnan, C. & other authors ( 2006; ). RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7, 1168–1175.[CrossRef]
    [Google Scholar]
  10. German-Retana, S., Candresse, T., Alias, E., Delbos, R.-P. & Le Gall, O. ( 2000; ). Effects of green fluorescent protein or β-glucuronidase tagging on the accumulation and pathogenicity of a resistance-breaking Lettuce mosaic virus isolate in susceptible and resistant lettuce cultivars. Mol Plant Microbe Interact 13, 316–324.[CrossRef]
    [Google Scholar]
  11. Germundsson, A. & Valkonen, J. P. T. ( 2006; ). P1-and VPg-transgenic plants show similar resistance to Potato virus A and may compromise long distance movement of the virus in plant sections expressing RNA silencing based resistance. Virus Res 116, 208–213.[CrossRef]
    [Google Scholar]
  12. Guo, H. S. & Garcia, J. A. ( 1997; ). Delayed resistance to plum pox potyvirus mediated by a mutated RNA replicase gene: involvement of a gene-silencing mechanism. Mol Plant Microbe Interact 10, 160–170.[CrossRef]
    [Google Scholar]
  13. Guo, H. S., Lopez-Moya, J. J. & Garcia, J. A. ( 1998; ). Susceptibility to recombination rearrangements of a chimeric plum pox potyvirus genome after insertion of a foreign gene. Virus Res 57, 183–195.[CrossRef]
    [Google Scholar]
  14. Hamilton, A. J. & Baulcombe, D. C. ( 1999; ). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.[CrossRef]
    [Google Scholar]
  15. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. ( 2002; ). Two classes of short interfering RNA in RNA silencing. EMBO J 21, 4671–4679.[CrossRef]
    [Google Scholar]
  16. Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. & Voinnet, O. ( 2003; ). Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22, 4523–4533.[CrossRef]
    [Google Scholar]
  17. Johansen, L. K. & Carrington, J. C. ( 2001; ). Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126, 930–938.[CrossRef]
    [Google Scholar]
  18. Kasschau, K. D. & Carrington, J. C. ( 1998; ). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470.[CrossRef]
    [Google Scholar]
  19. Kekarainen, T., Savilahti, H. & Valkonen, J. P. T. ( 2002; ). Functional genomics on Potato virus A: a virus genome-wide map of sites essential for virus propagation. Genome Res 12, 584–594.[CrossRef]
    [Google Scholar]
  20. Kreuze, J. F., Savenkov, E. I., Cuellar, W., Li, X. & Valkonen, J. P. T. ( 2005; ). Viral class 1 RNase III involved in suppression of RNA silencing. J Virol 79, 7227–7238.[CrossRef]
    [Google Scholar]
  21. Kumagai, M. H., Donson, J., Della-Cioppa, G., Harvey, D., Hanley, K. & Grill, L. K. ( 1995; ). Cytoplasmic inhibition of carotenoid biosynthesis with a virus-derived RNA. Proc Natl Acad Sci U S A 92, 1679–1683.[CrossRef]
    [Google Scholar]
  22. Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y.-P., Dolja, V. V., Calvino, L. F., López-Moya, J. & Burgyàn, J. ( 2006; ). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25, 2768–2780.[CrossRef]
    [Google Scholar]
  23. Lindbo, J. A. & Dougherty, W. G. ( 1992a; ). Pathogen-derived resistance to a potyvirus: immune and resistance phenotypes in transgenic tobacco expressing altered form of a potyvirus coat protein nucleotide sequence. Mol Plant Microbe Interact 5, 144–153.[CrossRef]
    [Google Scholar]
  24. Lindbo, J. A. & Dougherty, W. G. ( 1992b; ). Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189, 725–733.[CrossRef]
    [Google Scholar]
  25. Lindbo, J. A., Silvia-Rosales, L., Proebsting, W. M. & Dougherty, W. G. ( 1993; ). Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759.[CrossRef]
    [Google Scholar]
  26. Liu, Y., Schiff, M. & Dinesh-Kumar, S. P. ( 2002a; ). Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30, 415–429.[CrossRef]
    [Google Scholar]
  27. Liu, Y., Schiff, M., Serino, G., Deng, X. W. & Dinesh-Kumar, S. P. ( 2002b; ). Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14, 1483–1496.[CrossRef]
    [Google Scholar]
  28. Mallory, A. C., Ely, L., Smith, T. H., Marathe, R., Anandalakshmi, R., Fagard, M., Vaucheret, H., Pruss, G., Bowman, L. & Vance, V. B. ( 2001; ). HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13, 571–583.[CrossRef]
    [Google Scholar]
  29. Mallory, A. C., Parks, G., Endres, M. W., Baulcombe, D., Bowman, L. H., Pruss, G. J. & Vance, V. B. ( 2002; ). The amplicon-plus system for high-level expression of transgenes in plants. Nat Biotechnol 20, 622–635.[CrossRef]
    [Google Scholar]
  30. Mallory, A. C., Mlotshwa, S., Bowman, L. H. & Vance, V. B. ( 2003; ). The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. Plant J 35, 82–92.[CrossRef]
    [Google Scholar]
  31. Matthews, R. E. F. ( 1991; ). The nature of dark green tissue. In Plant Virology, 3rd edn. pp. 448–449. San Diego, CA: Academic Press.
  32. Molnár, A., Csorba, T., Lakatos, L., Várallaya, É., Lacomme, C. & Burgyán, J. ( 2005; ). Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79, 7812–7818.[CrossRef]
    [Google Scholar]
  33. Moore, C. J., Sutherland, P. W., Forster, R. L. S., Gardner, R. C. & MacDiarmid, R. M. ( 2001; ). Dark green islands in plant virus infection are the result of posttransciptional gene silencing. Mol Plant Microbe Interact 14, 939–946.[CrossRef]
    [Google Scholar]
  34. Paalme, V., Gammelgård, E., Järvekülg, L. & Valkonen, J. P. T. ( 2004; ). In vitro recombinants of two nearly identical potyviral isolates express novel virulence and symptom phenotypes in plants. J Gen Virol 85, 739–747.[CrossRef]
    [Google Scholar]
  35. Palauqui, J. C., Elmayan, T., Pollien, J. M. & Vaucheret, H. ( 1997; ). Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16, 4738–4745.[CrossRef]
    [Google Scholar]
  36. Rajamäki, M.-L. & Valkonen, J. P. T. ( 1999; ). The 6K2 protein and the VPg of Potato virus A are determinants of systemic infection in Nicandra physaloides. Mol Plant Microbe Interact 12, 1074–1081.[CrossRef]
    [Google Scholar]
  37. Rajamäki, M., Merits, A., Rabenstein, F., Andrejeva, J., Paulin, L., Kekarainen, T., Kreuze, J. F., Forster, R. L. S. & Valkonen, J. P. T. ( 1998; ). Biological, serological, and molecular differences among isolates of potato A potyvirus. Phytopathology 88, 311–321.[CrossRef]
    [Google Scholar]
  38. Rajamäki, M. L., Kelloniemi, J., Alminaite, A., Kekarainen, T., Rabenstein, F. & Valkonen, J. P. T. ( 2005; ). A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology 342, 88–101.[CrossRef]
    [Google Scholar]
  39. Ratcliff, F., Martin-Hernandez, A. M. & Baulcombe, D. C. ( 2001; ). Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25, 237–245.
    [Google Scholar]
  40. Reid, M. S. & Matthews, R. E. F. ( 1966; ). On the origin of the mosaic induced by turnip yellow mosaic virus. Virology 28, 563–570.[CrossRef]
    [Google Scholar]
  41. Roberts, A. G., Santa Cruz, S., Roberts, I. M., Prior, D. A. M., Turgeon, R. & Oparka, K. J. ( 1997; ). Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9, 1381–1396.[CrossRef]
    [Google Scholar]
  42. Ruiz, M. T., Voinnet, O. & Baulcombe, D. C. ( 1998; ). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946.[CrossRef]
    [Google Scholar]
  43. Santa Cruz, S. ( 1999; ). Perspective: phloem transport of virus and macromolecules – what goes in must come out. Trends Microbiol 7, 237–241.[CrossRef]
    [Google Scholar]
  44. Savenkov, E. I. & Valkonen, J. P. T. ( 2002; ). Silencing of a viral RNA silencing suppressor in transgenic plants. J Gen Virol 83, 2325–2335.
    [Google Scholar]
  45. Schwach, F., Vaistij, F. E., Jones, L. & Baulcombe, D. C. ( 2005; ). An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138, 1842–1852.[CrossRef]
    [Google Scholar]
  46. Shaharuddin, N. A., Han, Y. H., Li, H. Y. & Grierson, D. ( 2006; ). The mechanism of graft transmission of sense and antisense gene silencing in tomato plants. FEBS Lett 580, 6579–6586.[CrossRef]
    [Google Scholar]
  47. Simón-Mateo, C., López-Moya, J. J., Gou, H. S., Gonsález, E. & García, J. A. ( 2003; ). Suppressor activity of potyviral and cucumoviral infections in potyvirus-induced transgene silencing. J Gen Virol 84, 2877–2883.[CrossRef]
    [Google Scholar]
  48. Spetz, C. & Valkonen, J. P. T. ( 2004; ). Functions of the potyviral 6K2 protein in long distance movement and symptom induction are independent and host-specific. Mol Plant Microbe Interact 17, 502–510.[CrossRef]
    [Google Scholar]
  49. Swaney, S., Powers, H., Goodwin, J., Rosales, S. & Dougherty, W. G. ( 1995; ). RNA-mediated resistance with non-structural genes from the tobacco etch virus genome. Mol Plant Microbe Interact 8, 1004–1011.[CrossRef]
    [Google Scholar]
  50. Tournier, B., Tabler, M. & Kalantidis, K. ( 2006; ). Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J 47, 383–394.[CrossRef]
    [Google Scholar]
  51. Turgeon, R. ( 1989; ). The sink-source transition in leaves. Annu Rev Plant Physiol 40, 119–138.[CrossRef]
    [Google Scholar]
  52. Vaistij, F. E., Jones, L. & Baulcombe, D. C. ( 2002; ). Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867.[CrossRef]
    [Google Scholar]
  53. Van Den Boogaart, T., Maule, A. J., Davies, J. W. & Lomonossoff, G. P. ( 2004; ). Sources of target specificity associated with the recovery against Pea seed-borne mosaic virus infection mediated by RNA silencing in pea. Mol Plant Pathol 5, 37–43.[CrossRef]
    [Google Scholar]
  54. Voinnet, O. ( 2005; ). Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6, 206–220.[CrossRef]
    [Google Scholar]
  55. Voinnet, O. & Baulcombe, D. C. ( 1997; ). Systemic signalling in gene silencing. Nature 389, 553 [CrossRef]
    [Google Scholar]
  56. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. ( 1998; ). Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177–187.[CrossRef]
    [Google Scholar]
  57. Yoo, B.-C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y. M., Lough, T. J. & Lucas, W. J. ( 2004; ). A systemic small RNA silencing system in plants. Plant Cell 16, 1979–2000.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82928-0
Loading
/content/journal/jgv/10.1099/vir.0.82928-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error