1887

Abstract

The flaviviruses of major medical importance in South American countries are yellow fever, dengue, Saint Louis encephalitis, West Nile and Rocio viruses. Rocio virus (ROCV) has been responsible for epidemics of severe encephalitis in Brazil with a case-fatality rate of 10 % and development of sequelae in 20 % of the survivors. We have sequenced and characterized the entire genome of ROCV for the first time, by determining the general traits of the open reading frame and the characteristics of viral genes including the potential cleavage sites, conserved or unique motifs, cysteine residues and potential glycosylation sites. The conserved sequences in the 3′-non-coding region were identified, and the predicted secondary structures during cyclization between 5′- and 3′-non-coding regions were studied. Multiple protein and phylogenetic analyses based on antigenically important and phylogenetically informative genes confirmed a close relationship between ROCV and Ilheus virus (ILHV), together constituting a unique and distinct phylogenetic subgroup as well as the genetic relationship of ROCV with several members of the Japanese encephalitis group. Although ROCV is phylogenetically related to ILHV, our study shows that it is still a virus distinct from the latter virus. This is the first flavivirus uniquely indigenous to Brazil that has been sequenced completely and the genome characterized. The data should be useful for further studies at the molecular level, including construction of infectious clone, identification of gene function, improved disease surveillance based on molecular diagnostic tools and vaccine development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82883-0
2007-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2237.html?itemId=/content/journal/jgv/10.1099/vir.0.82883-0&mimeType=html&fmt=ahah

References

  1. Bakonyi, T., Gould, E. A., Kolodziejek, J., Weissenbock, H. & Nowotny, N. ( 2004; ). Complete genome analysis and molecular characterization of Usutu virus that emerged in Austria in 2001: comparison with the South African strain SAAR-1776 and other flaviviruses. Virology 328, 301–310.
    [Google Scholar]
  2. Beasley, D. W., Whiteman, M. C., Zhang, S., Huang, C. Y.-H., Schneider, B. S., Smith, D. R., Gromowski, G. D., Higgs, S., Kinney, R. M. & Barrett, A. D. T. ( 2005; ). Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79, 8339–8347.[CrossRef]
    [Google Scholar]
  3. Bhardwaj, S., Holbrook, M., Shope, R. E., Barrett, A. D. T. & Watowich, S. J. ( 2001; ). Biophysical characterization and the vector-specific antagonist activity of the domain III of the tick-borne flavivirus envelope protein. J Virol 75, 4002–4007.[CrossRef]
    [Google Scholar]
  4. Billoir, F., de Chesse, R., Tolou, H., de Micco, P., Gould, E. A. & de Lamballerie, X. ( 2000; ). Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J Gen Virol 81, 781–790.
    [Google Scholar]
  5. Bryant, J. E., Vasconcelos, P. F. C., Rijnbran, D. R. C. A., Mutebi, J. P., Higgs, S. & Barrett, A. D. T. ( 2005; ). Size heterogeneity in the 3′ non-coding region of South American isolates of yellow fever virus. J Virol 79, 3807–3821.[CrossRef]
    [Google Scholar]
  6. Castle, E., Nowak, T., Leidner, U., Wengler, G. & Wengler, G. ( 1985; ). Sequence analysis of the viral core protein and the membrane-associated proteins V1 and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology 145, 227–236.[CrossRef]
    [Google Scholar]
  7. Chamberlain, R. W. ( 1980; ). Epidemiology of arthropod-borne togaviruses: the role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles. In The Togaviruses: Biology, Structure, Replication, pp. 175–239. Edited by R.W. Schlesinger. New York: Academic Press.
  8. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990; ). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.[CrossRef]
    [Google Scholar]
  9. Chang, G.-J. J., Hunt, A. R. & Davis, B. ( 2000; ). A single intramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice. J Virol 74, 4244–4252.[CrossRef]
    [Google Scholar]
  10. Charrel, R. N., Zaki, A. M., Attoui, H., Fakeeh, M., Billoir, F., Yousef, A. I., de Chesse, R., de Micco, P., Gould, E. A. & de Lamballerie, X. ( 2001; ). Complete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe hemorrhagic fever in humans in Saudi Arabia. Biochem Biophys Res Commun 287, 455–461.[CrossRef]
    [Google Scholar]
  11. Ciota, A. T., Lovelace, A. O., Ngo, K. A., Le, A. N., Maffei, J. G., Franke, M. A., Payne, A. F., Jones, S. A., Kauffman, E. B. & Kramer, L. D. ( 2007; ). Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology 357, 165–174.[CrossRef]
    [Google Scholar]
  12. Coia, G., Parker, M. D., Speight, G., Byrne, M. E. & Westaway, E. G. ( 1988; ). Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. J Gen Virol 69, 1–21.[CrossRef]
    [Google Scholar]
  13. Cook, S. & Holmes, E. C. ( 2005; ). A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission. Arch Virol 151, 309–325.
    [Google Scholar]
  14. Crabtree, M. B., Kinney, R. M. & Miller, B. R. ( 2005; ). Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch Virol 150, 771–786.[CrossRef]
    [Google Scholar]
  15. de Sousa Lopes, O., Coimbra, T. L. M., Sacchetta, L. A. & Calisher, C. H. ( 1978; ). Emergence of a new arbovirus in Brazil. I. Isolation and characterization of the etiologic agent. Am J Epidemiol 107, 444–449.
    [Google Scholar]
  16. de Sousa Lopes, O., Sacchetta, L. A., Francy, D. B., Jakob, W. & Calisher, C. H. ( 1981; ). Emergence of a new arbovirus disease in Brazil. III. Isolation of Rocio virus from Psorophora ferox (Humboldt, 1819). Am J Epidemiol 113, 122–125.
    [Google Scholar]
  17. Diaz, L. A., Re, V., Almiron, W. R., Farias, A., Vazquez, A., Sanchez-Seco, M. P., Aguilar, J., Spinsanti, L., Konigheim, B. & other authors ( 2006; ). Genotype III Saint Louis encephalitis virus outbreak, Argentina, 2005. Emerg Infect Dis 12, 1752–1754.[CrossRef]
    [Google Scholar]
  18. Efron, B. ( 1982; ). The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics, Monograph 38, SIAM, Philadelphia.
  19. Felsenstein, J. ( 1995; ). phylip, version 3.57c. Department of Genetics, University of Washington, Seattle, WA.
  20. Gaunt, M. W., Sall, A. A., de Lamballerie, X., Falconar, A. K. I., Dzhivanian, T. I. & Gould, E. A. ( 2001; ). Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82, 1867–1876.
    [Google Scholar]
  21. Goto, A., Yoshii, K., Obara, M., Ueki, T., Mizutani, T., Kariwa, H. & Takashima, I. ( 2005; ). Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine 23, 3043–3052.[CrossRef]
    [Google Scholar]
  22. Gould, E. A., de Lamballerie, X., Zanotto, P. M. & Holmes, E. C. ( 2003; ). Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv Virus Res 59, 277–314.
    [Google Scholar]
  23. Grard, G., Moureau, G., Charrel, R. N., Lemasson, J.-J., Gonzalez, J.-P., Gallian, P., Gritsun, T., Holmes, E. C., Gould, E. A. & de Lamballerie, X. ( 2007; ). Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 361, 80–92.[CrossRef]
    [Google Scholar]
  24. Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G. & Strauss, J. H. ( 1987; ). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198, 33–41.[CrossRef]
    [Google Scholar]
  25. Hall, T. A. ( 2001; ). BioEdit. Department of Microbiology, North Carolina State University, Raleigh, NC.
  26. Hurrelbrink, R. J., Nestorowicz, A. & McMinn, P. C. ( 1999; ). Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA. J Gen Virol 80, 3115–3125.
    [Google Scholar]
  27. ICTV ( 2005; ). Virus Taxonomy: Eighth Report of the International Committee on the Taxonomy of Viruses, p. 1259. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. London: Elsevier.
  28. Iversson, L. B. ( 1988; ). Rocio encephalitis. In The Arboviruses – Epidemiology and Ecology, vol. 4, pp. 77–92. Edited by T. P. Monath. Boca Raton, FL: CRC Press.
  29. Karabatsos, N. ( 1985; ). International Catalogue of Arboviruses, 3rd edn. San Antonio, TX: American Society of Tropical Medicine and Hygiene.
  30. Khromykh, A. A., Meka, H., Guyatt, K. J. & Westaway, E. G. ( 2001; ). Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75, 6719–6728.[CrossRef]
    [Google Scholar]
  31. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  32. Kuno, G. & Chang, G.-J. J. ( 2005; ). Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18, 608–637.[CrossRef]
    [Google Scholar]
  33. Kuno, G. & Chang, G.-J. J. ( 2006; ). Characterization of Sepik and Entebbe bat viruses closely related to yellow fever virus. Am J Trop Med Hyg 75, 1165–1170.
    [Google Scholar]
  34. Kuno, G. & Chang, G.-J. J. ( 2007; ). Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol 152, 687–696.[CrossRef]
    [Google Scholar]
  35. Kuno, G., Chang, G.-J. J., Tsuchiya, K. R., Karabatsos, N. & Cropp, C. B. ( 1998; ). Phylogeny of the genus Flavivirus. J Virol 72, 73–83.
    [Google Scholar]
  36. Lee, E. & Lobigs, M. ( 2000; ). Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74, 8867–8875.[CrossRef]
    [Google Scholar]
  37. Li, J., Bhuvanakantham, R., Howe, J. & Ng, M.-L. ( 2006; ). The glycosylation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes. J Gen Virol 87, 613–622.[CrossRef]
    [Google Scholar]
  38. Lindenbach, B. D. & Rice, C. M. ( 2003; ). Molecular biology of flaviviruses. Adv Virus Res 59, 23–61.
    [Google Scholar]
  39. May, F. J., Lobigs, M., Lee, E., Gendle, D. J., Mackenzie, J. S., Broom, A. K., Conlan, J. V. & Hall, R. A. ( 2006; ). Biological, antigenic and phylogenetic characterization of the flavivirus Alfuy. J Gen Virol 87, 329–337.[CrossRef]
    [Google Scholar]
  40. Mitchell, C. J., Monath, T. P. & Cropp, C. B. ( 1981; ). Experimental transmission of Rocio virus by mosquitoes. Am J Trop Med Hyg 30, 465–472.
    [Google Scholar]
  41. Mondini, A., Cardeal, I. L. S., Lazaro, E., Nunes, S. H., Moreira, C. B., Rahal, P., Maia, I. L., Franco, C., Gongora, D. V. N. & other authors ( 2007; ). Saint Louis encephalitis virus, Brazil. Emerg Infect Dis 13, 176–178.[CrossRef]
    [Google Scholar]
  42. Mutebi, J. P., Rijnbrand, R. C. A., Wang, H., Ryman, K. D., Wang, E., Fulop, L. D., Titball, R. & Barrett, A. D. T. ( 2004; ). Genetic relationships and evolution of genotypes of yellow fever virus and other members of the yellow fever virus group within the Flavivirus genus based on the 3′ noncoding region. J Virol 78, 9652–9665.[CrossRef]
    [Google Scholar]
  43. Pierre, V., Drouet, M.-T. & Deubel, V. ( 1994; ). Identification of mosquito-borne flavivirus sequences using universal primers and reverse transcription/polymerase chain reaction. Res Virol 145, 93–104.[CrossRef]
    [Google Scholar]
  44. Proutski, V., Gould, E. A. & Holmes, E. C. ( 1997; ). Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25, 1194–1202.[CrossRef]
    [Google Scholar]
  45. Rice, C. M. & Strauss, J. H. ( 1990; ). Production of flavivirus polypeptides by proteolytic processing. Semin Virol 1, 357–367.
    [Google Scholar]
  46. Rice, C. M., Lenches, E. M., Eddy, S. R., Shin, S. J., Sheets, R. L. & Strauss, J. H. ( 1985; ). Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229, 726–733.[CrossRef]
    [Google Scholar]
  47. Sabin, A. B. ( 1959; ). Survey of knowledge and problems in field of arthropod-borne virus infections. Arch Gesamte Virusforsch 9, 1–10.
    [Google Scholar]
  48. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  49. Spence, L. P. ( 1980; ). St. Louis encephalitis in tropical America. In St. Louis Encephalitis, pp. 451–471. Edited by T. P. Monath. Washington, DC: American Public Health Association.
  50. Straatmann, A., Santos-Torres, S., Vasconcelos, P. F., Travassos da Rosa, A. P. A., Rodrigues, S. G. & Tavares-Neto, J. ( 1997; ). Serological evidence of the circulation of the Rocio arbovirus (Flaviviridae) in Bahia. Rev Soc Bras Med Trop 30, 511–515.[CrossRef]
    [Google Scholar]
  51. Sumiyoshi, H., Mori, C., Fuke, I., Morita, K., Kuhara, S., Kondou, J., Kikuchi, Y., Nagamatu, H. & Igarashi, A. ( 1987; ). Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161, 497–510.[CrossRef]
    [Google Scholar]
  52. Swofford, D. L. ( 1999; ). paup. Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  53. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  54. Van Regenmortel, M. H. V., Bishop, D. H. L., Fauquet, C. M., Mayo, M. A., Maniloff, J. & Calisher, C. H. ( 1997; ). Guidelines to the demarcation of virus species. Arch Virol 142, 1505–1518.
    [Google Scholar]
  55. Vasconcelos, P. F. C., Travassos da Rosa, A. P. A., Dégallier, N., Travassos da Rosa, J. F. S. & Pinheiro, F. P. ( 1992; ). Clinical and ecoepidemiological situation of human arboviruses in Brazilian Amazonia. Cienc Cult 44, 117–124.
    [Google Scholar]
  56. Vasconcelos, P. F. C., Travassos da Rosa, A. P. A., Pinheiro, F. P., Shope, R. E., Travassos da Rosa, J. F. S., Rodrigues, S. G., Dégallier, N. & Travassos da Rosa, J. F. S. ( 1998; ). Arboviruses pathogenic for man in Brazil. In An Overview of Arbovirology in Brazil and Neighbouring Countries, pp. 72–99. Edited by A. P. A. Travassos da Rosa, P. F. C. Vasconcelos & J. F. S. Travassos da Rosa. Belem, Brazil: Instituto Evandro Chagas.
  57. Vorndam, V., Mathews, J. H., Barrett, A. D., Roehrig, J. T. & Trent, D. W. ( 1993; ). Molecular and biological characterization of a non-glycosylated isolate of St Louis encephalitis virus. J Gen Virol 74, 2653–2660.[CrossRef]
    [Google Scholar]
  58. Wallner, G., Mandl, C. W., Kunz, C. & Heinz, F. X. ( 1995; ). The flavivirus 3′-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology 213, 169–178.[CrossRef]
    [Google Scholar]
  59. Winkler, G., Heinz, F. X. & Kunz, C. ( 1987; ). Studies on the glycosylation of flavivirus E proteins and the role of carbohydrates in antigenic structure. Virology 159, 237–243.[CrossRef]
    [Google Scholar]
  60. Zuker, M., Mathews, D. H. & Turner, D. H. ( 1999; ). Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In RNA Biochemistry and Biotechnology, pp. 11–43. Edited by J. Barciszewski & B. F. C. Clark. Amsterdam: Kluwer Academic Publishers.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82883-0
Loading
/content/journal/jgv/10.1099/vir.0.82883-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2237 - 2246

Comparison of ROCV with other mosquito-borne, tick-borne and unknown-vectored flavivirus genomes

Comparison of cleavage sites of ROCV, selected JEV group viruses (WNV, SLEV, JEV and MVEV) and BAGV [Single PDF file](52 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error