1887

Abstract

Abnormal accumulation of -catenin is considered to be a strong driving force in hepatocellular carcinogenesis; however, the mechanism of -catenin accumulation in tumours is unclear. Here, it was demonstrated that hepatitis B virus X protein (HBx) differentially regulates the level of -catenin through two ubiquitin-dependent proteasome pathways depending on p53 status. In the presence of p53, HBx downregulated -catenin through the activation of a p53–Siah-1 proteasome pathway. For this purpose, HBx upregulated Siah-1 expression at the transcriptional level via activation of p53. In the absence of p53, however, HBx stabilized -catenin through the inhibition of a glycogen synthase kinase-3-dependent pathway. Interestingly, HBx variants with a Pro-101 to Ser substitution were unable to activate p53 and thus could stabilize -catenin irrespective of p53 status. Based on these findings, a model of -catenin regulation by HBx is proposed whereby the balance between the two opposite activities of HBx determines the overall expression level of -catenin. Differential regulation of -catenin by HBx depending on host (p53 status) and viral factors (HBx sequence variation) helps not only to explain the observation that cancers accumulating -catenin also exhibit a high frequency of p53 mutations but also to understand the contradictory reports on the roles of HBx during hepatocellular carcinogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82836-0
2007-08-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2144.html?itemId=/content/journal/jgv/10.1099/vir.0.82836-0&mimeType=html&fmt=ahah

References

  1. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. ( 1997; ). β-Catenin is a target for the ubiquitin–proteasome pathway. EMBO J 16, 3797–3804.[CrossRef]
    [Google Scholar]
  2. Ahn, J. Y., Chung, E. Y., Kwun, H. J., Lee, C. W., Sung, Y. C. & Jang, K. L. ( 2002; ). Dual effects of hepatitis B virus X protein on the regulation of cell-cycle control depending on the status of cellular p53. J Gen Virol 83, 2765–2772.
    [Google Scholar]
  3. Albrechtsen, N., Dornreiter, I., Grosse, F., Kim, E., Wiesmuller, L. & Deppert, W. ( 1999; ). Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene 18, 7706–7717.[CrossRef]
    [Google Scholar]
  4. Benn, J., Su, F., Doria, M. & Schneider, R. J. ( 1996; ). Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol 70, 4978–4985.
    [Google Scholar]
  5. Block, T. M., Mehta, A. S., Fimmel, C. J. & Jordan, R. ( 2003; ). Molecular viral oncology of hepatocellular carcinoma. Oncogene 22, 5093–5107.[CrossRef]
    [Google Scholar]
  6. Cagatay, T. & Ozturk, M. ( 2002; ). p53 mutation as a source of aberrant β-catenin accumulation in cancer cells. Oncogene 21, 7971–7980.[CrossRef]
    [Google Scholar]
  7. Calender, A., Billaud, M., Aubry, J. P., Banchereau, J., Vuillaume, M. & Lenoir, G. M. ( 1987; ). Epstein–Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells. Proc Natl Acad Sci U S A 84, 8060–8064.[CrossRef]
    [Google Scholar]
  8. Cha, M. Y., Kim, C. M., Park, Y. M. & Ryu, W. S. ( 2004; ). Hepatitis B virus X protein is essential for the activation of Wnt/β-catenin signaling in hepatoma cells. Hepatology 39, 1683–1693.[CrossRef]
    [Google Scholar]
  9. Ciechanover, A. & Ben-Saadon, R. ( 2004; ). N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 14, 103–106.[CrossRef]
    [Google Scholar]
  10. Colnot, S., Decaens, T., Niwa-Kawakita, M., Godard, C., Hamard, G., Kahn, A., Giovannini, M. & Perret, C. ( 2004; ). Liver-targeted disruption of Apc in mice activates β-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A 101, 17216–17221.[CrossRef]
    [Google Scholar]
  11. Cui, J., Zhou, X., Liu, Y., Tang, Z. & Romeih, M. ( 2003; ). Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of β-catenin, T-cell factor-4 and glycogen synthase kinase 3-β genes. J Gastroenterol Hepatol 18, 280–287.[CrossRef]
    [Google Scholar]
  12. de La Coste, A., Romagnolo, B., Billuart, P., Renard, C. A., Buendia, M. A., Soubrane, O., Fabre, M., Chelly, J., Beldjord, C. & other authors ( 1998; ). Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 95, 8847–8851.[CrossRef]
    [Google Scholar]
  13. Desbois-Mouthon, C., Cadoret, A., Blivet-Van Eggelpoel, M. J., Bertrand, F., Cherqui, G., Perret, C. & Capeau, J. ( 2001; ). Insulin and IGF-1 stimulate the β-catenin pathway through two signalling cascades involving GSK-3β inhibition and Ras activation. Oncogene 20, 252–259.[CrossRef]
    [Google Scholar]
  14. Devereux, T. R., Stern, M. C., Flake, G. P., Yu, M. C., Zhang, Z. Q., London, S. J. & Taylor, J. A. ( 2001; ). CTNNB1 mutations and β-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol Carcinog 31, 68–73.[CrossRef]
    [Google Scholar]
  15. Ding, Q., Xia, W., Liu, J. C., Yang, J. Y., Lee, D. F., Xia, J., Bartholomeusz, G., Li, Y., Pan, Y. & other authors ( 2005; ). Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol Cell 19, 159–170.[CrossRef]
    [Google Scholar]
  16. Elmore, L. W., Hancock, A. R., Chang, S. F., Wang, X. W., Chang, S., Callahan, C. P., Geller, D. A., Will, H. & Harris, C. C. ( 1997; ). Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci U S A 94, 14707–14712.[CrossRef]
    [Google Scholar]
  17. Endo, K., Ueda, T., Ueyama, J., Ohta, T. & Terada, T. ( 2000; ). Immunoreactive E-cadherin, α-catenin, β-catenin, and γ-catenin proteins in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, and patients' survival. Hum Pathol 31, 558–565.[CrossRef]
    [Google Scholar]
  18. Everly, D. N., Kusano, S. & Raab-Traub, N. ( 2004; ). Accumulation of cytoplasmic β-catenin and nuclear glycogen synthase kinase 3β in Epstein–Barr virus-infected cells. J Virol 78, 11648–11655.[CrossRef]
    [Google Scholar]
  19. Fiucci, G., Beaucourt, S., Duflaut, D., Lespagnol, A., Stumptner-Cuvelette, P., Geant, A., Buchwalter, G., Tuynder, M., Susini, L. & other authors ( 2004; ). Siah-1b is a direct transcriptional target of p53: identification of the functional p53 responsive element in the siah-1b promoter. Proc Natl Acad Sci U S A 101, 3510–3515.[CrossRef]
    [Google Scholar]
  20. Gottardi, C. J. & Gumbiner, B. M. ( 2001; ). Adhesion signaling: how β-catenin interacts with its partners. Curr Biol 11, R792–R794.[CrossRef]
    [Google Scholar]
  21. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B. & Kinzler, K. W. ( 1998; ). Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.[CrossRef]
    [Google Scholar]
  22. Holnthoner, W., Pillinger, M., Groger, M., Wolff, K., Ashton, A. W., Albanese, C., Neumeister, P., Pestell, R. G. & Petzelbauer, P. ( 2002; ). Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J Biol Chem 277, 45847–45853.[CrossRef]
    [Google Scholar]
  23. Hu, G. & Fearon, E. R. ( 1999; ). Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol Cell Biol 19, 724–732.
    [Google Scholar]
  24. Iwai, A., Marusawa, H., Matsuzawa, S., Fukushima, T., Hijikata, M., Reed, J. C., Shimotohno, K. & Chiba, T. ( 2004; ). Siah-1L, a novel transcript variant belonging to the human Siah family of proteins, regulates β-catenin activity in a p53-dependent manner. Oncogene 23, 7593–7600.[CrossRef]
    [Google Scholar]
  25. Jang, K. L., Shackelford, J., Seo, S. Y. & Pagano, J. S. ( 2005; ). Up-regulation of β-catenin by a viral oncogene correlates with inhibition of the seven in absentia homolog 1 in B lymphoma cells. Proc Natl Acad Sci U S A 102, 18431–18436.[CrossRef]
    [Google Scholar]
  26. Janus, F., Albrechtsen, N., Knippschild, U., Wiesmuller, L., Grosse, F. & Deppert, W. ( 1999; ). Different regulation of the p53 core domain activities 3′-to-5′ exonuclease and sequence-specific DNA binding. Mol Cell Biol 19, 2155–2168.
    [Google Scholar]
  27. Jia, L., Wang, X. W. & Harris, C. C. ( 1999; ). Hepatitis B virus X protein inhibits nucleotide excision repair. Int J Cancer 80, 875–879.[CrossRef]
    [Google Scholar]
  28. Katoh, H., Shibata, T., Kokubu, A., Ojima, H., Kosuge, T., Kanai, Y. & Hirohashi, S. ( 2006; ). Genetic inactivation of the APC gene contributes to the malignant progression of sporadic hepatocellular carcinoma: a case report. Genes Chromosomes Cancer 45, 1050–1057.[CrossRef]
    [Google Scholar]
  29. Kim, C. M., Koike, K., Saito, I., Miyamura, T. & Jay, G. ( 1991; ). HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351, 317–320.[CrossRef]
    [Google Scholar]
  30. Kwun, H. J. & Jang, K. L. ( 2004; ). Natural variants of hepatitis B virus X protein have differential effects on the expression of cyclin-dependent kinase inhibitor p21 gene. Nucleic Acids Res 32, 2202–2213.[CrossRef]
    [Google Scholar]
  31. Laurent-Puig, P., Legoix, P., Bluteau, O., Belghiti, J., Franco, D., Binot, F., Monges, G., Thomas, G., Bioulac-Sage, P. & Zucman-Rossi, J. ( 2001; ). Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120, 1763–1773.[CrossRef]
    [Google Scholar]
  32. Lee, Y. H. & Yun, Y. ( 1998; ). HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem 273, 25510–25515.[CrossRef]
    [Google Scholar]
  33. Lee, C. W., Sorensen, T. S., Shikama, N. & La Thangue, N. B. ( 1998; ). Functional interplay between p53 and E2F through co-activator p300. Oncogene 16, 2695–2710.[CrossRef]
    [Google Scholar]
  34. Levine, A. J. ( 1997; ). p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.[CrossRef]
    [Google Scholar]
  35. Liu, J., Stevens, J., Rote, C. A., Yost, H. J., Hu, Y., Neufeld, K. L., White, R. L. & Matsunami, N. ( 2001; ). Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7, 927–936.[CrossRef]
    [Google Scholar]
  36. Maguire, H. F., Hoeffler, J. P. & Siddiqui, A. ( 1991; ). HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein–protein interactions. Science 252, 842–844.[CrossRef]
    [Google Scholar]
  37. Matsuo, K., Satoh, S., Okabe, H., Nomura, A., Maeda, T., Yamaoka, Y. & Ikai, I. ( 2003; ). SIAH1 inactivation correlates with tumor progression in hepatocellular carcinomas. Genes Chromosomes Cancer 36, 283–291.[CrossRef]
    [Google Scholar]
  38. Matsuzawa, S. I. & Reed, J. C. ( 2001; ). Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol Cell 7, 915–926.[CrossRef]
    [Google Scholar]
  39. Morgan, S. E., Kim, R., Wang, P. C., Bhat, U. G., Kusumoto, H., Lu, T. & Beck, W. T. ( 2000; ). Differences in mutant p53 protein stability and functional activity in teniposide-sensitive and -resistant human leukemic CEM cells. Oncogene 19, 5010–5019.[CrossRef]
    [Google Scholar]
  40. Nelson, W. J. & Nusse, R. ( 2004; ). Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487.[CrossRef]
    [Google Scholar]
  41. Park, U. S., Park, S. K., Lee, Y. I., Park, J. G. & Lee, Y. I. ( 2000; ). Hepatitis B virus-X protein upregulates the expression of p21waf1/cip1 and prolongs G1 to S transition via a p53-independent pathway in human hepatoma cells. Oncogene 19, 3384–3394.[CrossRef]
    [Google Scholar]
  42. Paterlini, P., Poussin, K., Kew, M., Franco, D. & Brechot, C. ( 1995; ). Selective accumulation of the X transcript of hepatitis B virus in patients negative for hepatitis B surface antigen with hepatocellular carcinoma. Hepatology 21, 313–321.
    [Google Scholar]
  43. Peifer, M. & Polakis, P. ( 2000; ). Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287, 1606–1609.[CrossRef]
    [Google Scholar]
  44. Polakis, P. ( 2007; ). The many ways of Wnt in cancer. Curr Opin Genet Dev 17, 45–51.[CrossRef]
    [Google Scholar]
  45. Prost, S., Ford, J. M., Taylor, C., Doig, J. & Harrison, D. J. ( 1998; ). Hepatitis B x protein inhibits p53-dependent DNA repair in primary mouse hepatocytes. J Biol Chem 273, 33327–33332.[CrossRef]
    [Google Scholar]
  46. Qadri, I., Maguire, H. F. & Siddiqui, A. ( 1995; ). Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc Natl Acad Sci U S A 92, 1003–1007.[CrossRef]
    [Google Scholar]
  47. Sadot, E., Geiger, B., Oren, M. & Ben-Ze'ev, A. ( 2001; ). Down-regulation of β-catenin by activated p53. Mol Cell Biol 21, 6768–6781.[CrossRef]
    [Google Scholar]
  48. Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., Kawasoe, T., Ishiguro, H., Fujita, M. & other authors ( 2000; ). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24, 245–250.[CrossRef]
    [Google Scholar]
  49. Shih, W. L., Kuo, M. L., Chuang, S. E., Cheng, A. L. & Doong, S. L. ( 2000; ). Hepatitis B virus X protein inhibits transforming growth factor-β-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem 275, 25858–25864.[CrossRef]
    [Google Scholar]
  50. Slagle, B. L., Lee, T. H., Medina, D., Finegold, M. J. & Butel, J. S. ( 1996; ). Increased sensitivity to the hepatocarcinogen diethylnitrosamine in transgenic mice carrying the hepatitis B virus X gene. Mol Carcinog 15, 261–269.[CrossRef]
    [Google Scholar]
  51. Sohn, S., Jaitovitch-Groisman, I., Benlimame, N., Galipeau, J., Batist, G. & Alaoui-Jamali, M. A. ( 2000; ). Retroviral expression of the hepatitis B virus x gene promotes liver cell susceptibility to carcinogen-induced site specific mutagenesis. Mutat Res 460, 17–28.[CrossRef]
    [Google Scholar]
  52. Taniguchi, K., Roberts, L. R., Aderca, I. N., Dong, X., Qian, C., Murphy, L. M., Nagorney, D. M., Burgart, L. J., Roche, P. C. & other authors ( 2002; ). Mutational spectrum of β-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21, 4863–4871.[CrossRef]
    [Google Scholar]
  53. Terradillos, O., Billet, O., Renard, C. A., Levy, R., Molina, T., Briand, P. & Buendia, M. A. ( 1997; ). The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene 14, 395–404.[CrossRef]
    [Google Scholar]
  54. Tetsu, O. & McCormick, F. ( 1999; ). β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426.[CrossRef]
    [Google Scholar]
  55. van de Wetering, M., Oosterwegel, M., Dooijes, D. & Clevers, H. ( 1991; ). Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 10, 123–132.
    [Google Scholar]
  56. Wong, C. M., Fan, S. T. & Ng, I. O. ( 2001; ). β-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 92, 136–145.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82836-0
Loading
/content/journal/jgv/10.1099/vir.0.82836-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error