1887

Abstract

Bovine leukemia virus (BLV) is a valuable model system for understanding human T-lymphotropic virus 1 (HTLV-1); the availability of an infectious BLV clone, together with animal-model systems, will help to explore anti-HTLV-1 strategies. Nevertheless, the specificity and inhibitor sensitivity of the BLV protease (PR) have not been characterized in detail. To facilitate such studies, a molecular model for the enzyme was built. The specificity of the BLV PR was studied with a set of oligopeptides representing naturally occurring cleavage sites in various retroviruses. Unlike HTLV-1 PR, but similar to the human immunodeficiency virus 1 (HIV-1) enzyme, BLV PR was able to hydrolyse the majority of the peptides, mostly at the same position as did their respective host PRs, indicating a broad specificity. When amino acid residues of the BLV PR substrate-binding sites were replaced by equivalent ones of the HIV-1 PR, many substitutions resulted in inactive protein, indicating a great sensitivity to mutations, as observed previously for the HTLV-1 PR. The specificity of the enzyme was studied further by using a series of peptides containing amino acid substitutions in a sequence representing a naturally occurring HTLV-1 PR cleavage site. Also, inhibitors of HIV-1 PR, HTLV-1 PR and other retroviral proteases were tested on the BLV PR. Interestingly, the BLV PR was more susceptible than the HTLV-1 PR to the inhibitors tested. Therefore, despite the specificity differences, in terms of mutation intolerance and inhibitor susceptibility of the PR, BLV and the corresponding animal-model systems may provide good models for testing of PR inhibitors that target HTLV-1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82704-0
2007-07-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/2052.html?itemId=/content/journal/jgv/10.1099/vir.0.82704-0&mimeType=html&fmt=ahah

References

  1. Altanerova, V., Holicova, D., Kucerova, L., Altaner, C., Lairmore, M. D. & Boris-Lawrie, K. ( 2004; ). Long-term infection with retroviral structural gene vector provides protection against bovine leukemia virus disease in rabbits. Virology 329, 434–439.[CrossRef]
    [Google Scholar]
  2. Baboonian, C., Dalgleish, A., Bountiff, L., Gross, J., Oroszlan, S., Rickett, G., Smith-Burchnell, C., Troke, P. & Merson, J. ( 1991; ). HIV-1 proteinase is required for synthesis of pro-viral DNA. Biochem Biophys Res Commun 179, 17–24.[CrossRef]
    [Google Scholar]
  3. Bagossi, P., Kadas, J., Miklossy, G., Boross, P., Weber, I. T. & Tozser, J. ( 2004; ). Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases. J Virol Methods 119, 87–93.[CrossRef]
    [Google Scholar]
  4. Bagossi, P., Sperka, T., Feher, A., Kadas, J., Zahuczky, G., Miklossy, G., Boross, P. & Tozser, J. ( 2005; ). Amino acid preferences for a critical substrate binding subsite of retroviral proteases in type 1 cleavage sites. J Virol 79, 4213–4218.[CrossRef]
    [Google Scholar]
  5. Buehring, G. C., Philpott, S. M. & Choi, K. Y. ( 2003; ). Humans have antibodies reactive with bovine leukemia virus. AIDS Res Hum Retroviruses 19, 1105–1113.[CrossRef]
    [Google Scholar]
  6. Cameron, C. E., Grinde, B., Jacques, P., Jentoft, J., Leis, J., Wlodawer, A. & Weber, I. T. ( 1993; ). Comparison of the substrate-binding pockets of the Rous sarcoma virus and human immunodeficiency virus type 1 proteases. J Biol Chem 268, 11711–11720.
    [Google Scholar]
  7. De Clercq, E. ( 2004; ). Antiviral drugs in current clinical use. J Clin Virol 30, 115–133.[CrossRef]
    [Google Scholar]
  8. Fenyöfalvi, G., Bagossi, P., Copeland, T. D., Oroszlan, S., Boross, P. & Tözsér, J. ( 1999; ). Expression and characterization of human foamy virus proteinase. FEBS Lett 462, 397–401.[CrossRef]
    [Google Scholar]
  9. Fersht, A. R. ( 1985; ). Utilization of enzyme-substrate binding energy in catalysis. In Enzyme Structure and Mechanism, 2nd edn, pp. 311–317. New York: W. H. Freeman.
  10. Griffiths, J. T., Phylip, L. H., Konvalinka, J., Strop, P., Gustchina, A., Wlodawer, A., Davenport, R. J., Briggs, R., Dunn, B. M. & Kay, J. ( 1992; ). Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing -hydrophobic*hydrophobic- or -aromatic*pro- cleavage sites. Biochemistry 31, 5193–5200.[CrossRef]
    [Google Scholar]
  11. Grobelny, D., Wondrak, E. M., Galardy, R. E. & Oroszlan, S. ( 1990; ). Selective phosphinate transition-state analogue inhibitors of the protease of human immunodeficiency virus. Biochem Biophys Res Commun 169, 1111–1116.[CrossRef]
    [Google Scholar]
  12. Gustchina, A., Kervinen, J., Powell, D. J., Zdanov, A., Kay, J. & Wlodawer, A. ( 1996; ). Structure of equine infectious anemia virus proteinase complexed with an inhibitor. Protein Sci 5, 1453–1465.[CrossRef]
    [Google Scholar]
  13. Harrison, R. W. ( 1993; ). Stiffness and energy conservation in molecular dynamics: an improved integrator. J Comput Chem 14, 1112–1122.[CrossRef]
    [Google Scholar]
  14. Harrison, R. W. ( 2000; ). A self-assembling neural network for modeling polymers. J Math Chem 26, 125–138.
    [Google Scholar]
  15. Hayakawa, T., Misumi, Y., Kobayashi, M., Yamamoto, Y. & Fujisawa, Y. ( 1992; ). Requirement of N- and C-terminal regions for enzymatic activity of human T-cell leukemia virus type I protease. Eur J Biochem 206, 919–925.[CrossRef]
    [Google Scholar]
  16. Herger, B. E., Mariani, V. L., Dennison, K. & Shuker, S. B. ( 2004; ). The 10 C-terminal residues of HTLV-I protease are not necessary for enzymatic activity. Biochem Biophys Res Commun 320, 1306–1308.[CrossRef]
    [Google Scholar]
  17. Kádas, J., Weber, I. T., Bagossi, P., Miklóssy, G., Boross, P., Oroszlan, S. & Tözsér, J. ( 2004; ). Narrow substrate specificity and sensitivity towards ligand binding site mutations of human T-cell leukemia virus type-1 protease. J Biol Chem 279, 27148–27157.[CrossRef]
    [Google Scholar]
  18. Leis, J., Baltimore, D., Bishop, J. M., Coffin, J., Fleissner, E., Goff, S. P., Oroszlan, S., Robinson, H., Skalka, A. M. & other authors ( 1988; ). Standardized and simplified nomenclature for proteins common to all retroviruses. J Virol 62, 1808–1809.
    [Google Scholar]
  19. Lemey, P., Van Dooren, S. & Vandamme, A. M. ( 2005; ). Evolutionary dynamics of human retroviruses investigated through full-genome scanning. Mol Biol Evol 22, 942–951.[CrossRef]
    [Google Scholar]
  20. Li, M., Laco, G. S., Jaskolski, M., Rozycki, J., Alexandratos, J., Wlodawer, A. & Gustchina, A. ( 2005; ). Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design. Proc Natl Acad Sci U S A 102, 18332–18337.[CrossRef]
    [Google Scholar]
  21. Louis, J. M., Oroszlan, S. & Tözsér, J. ( 1999; ). Stabilization from autoproteolysis and kinetic characterization of the human T-cell leukemia virus type 1 proteinase. J Biol Chem 274, 6660–6666.[CrossRef]
    [Google Scholar]
  22. Menendez-Arias, L., Gotte, D. & Oroszlan, S. ( 1993; ). Moloney murine leukemia virus protease: bacterial expression and characterization of the purified enzyme. Virology 196, 557–563.[CrossRef]
    [Google Scholar]
  23. Pettit, S. C., Simsic, J., Loeb, D. D., Everitt, L., Hutchison, C. A., III & Swanstrom, R. ( 1991; ). Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem 266, 14539–14547.
    [Google Scholar]
  24. Powell, D. J., Bur, D., Wlodawer, A., Gustchina, A., Payne, S. L., Dunn, B. M. & Kay, J. ( 1996; ). Expression, characterisation and mutagenesis of the aspartic proteinase from equine infectious anaemia virus. Eur J Biochem 241, 664–674.[CrossRef]
    [Google Scholar]
  25. Precigoux, G., Geoffre, S., Leonard, R., Llido, S., Dautant, A., d'Estaintot, B. L., Picard, P., Menard, A., Guillemain, B. & Hospital, M. ( 1993; ). Modelling, synthesis and biological activity of a BLV proteinase, made of (only) 116 amino acids. FEBS Lett 326, 237–240.[CrossRef]
    [Google Scholar]
  26. Prejdova, J., Soucek, M. & Konvalinka, J. ( 2004; ). Determining and overcoming resistance to HIV protease inhibitors. Curr Drug Targets Infect Disord 4, 137–152.[CrossRef]
    [Google Scholar]
  27. Sayle, R. A. & Milner-White, E. J. ( 1995; ). rasmol: biomolecular graphics for all. Trends Biochem Sci 20, 374 [CrossRef]
    [Google Scholar]
  28. Sheremata, W. A., Benedict, D., Squilacote, D. C., Sazant, A. & DeFreitas, E. ( 1993; ). High-dose zidovudine induction in HTLV-I-associated myelopathy: safety and possible efficacy. Neurology 43, 2125–2129.[CrossRef]
    [Google Scholar]
  29. Tözsér, J. ( 1997; ). Specificity of retroviral proteinases based on substrates containing tyrosine and proline at the site of cleavage. Pathol Oncol Res 3, 142–146.[CrossRef]
    [Google Scholar]
  30. Tözsér, J. & Oroszlan, S. ( 2003; ). Proteolytic events of HIV-1 replication as targets for therapeutic intervention. Curr Pharm Des 9, 1803–1815.[CrossRef]
    [Google Scholar]
  31. Tözsér, J., Weber, I. T., Gustchina, A., Blaha, I., Copeland, T. D., Louis, J. M. & Oroszlan, S. ( 1992; ). Kinetic and modeling studies of S3–S3′ subsites of HIV proteinases. Biochemistry 31, 4793–4800.[CrossRef]
    [Google Scholar]
  32. Tözsér, J., Bagossi, P., Weber, I. T., Copeland, T. D. & Oroszlan, S. ( 1996; ). Comparative studies on the substrate specificity of avian myeloblastosis virus proteinase and lentiviral proteinases. J Biol Chem 271, 6781–6788.[CrossRef]
    [Google Scholar]
  33. Tözsér, J., Zahuczky, G., Bagossi, P., Louis, J. M., Copeland, T. D., Oroszlan, S., Harrison, R. W. & Weber, I. T. ( 2000; ). Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases. Eur J Biochem 267, 6287–6295.[CrossRef]
    [Google Scholar]
  34. Weber, I. T. ( 1991; ). Modeling of structure of human immunodeficiency virus-1 protease with substrate based on crystal structure of Rous sarcoma virus protease. Methods Enzymol 202, 727–741.
    [Google Scholar]
  35. Willems, L., Kerkhofs, P., Attenelle, L., Burny, A., Portetelle, D. & Kettmann, R. ( 1997; ). The major homology region of bovine leukaemia virus p24gag is required for virus infectivity in vivo. J Gen Virol 78, 637–640.
    [Google Scholar]
  36. Willems, L., Burny, A., Collete, D., Dangoisse, O., Dequiedt, F., Gatot, J. S., Kerkhofs, P., Lefebvre, L., Merezak, C. & other authors ( 2000; ). Genetic determinants of bovine leukemia virus pathogenesis. AIDS Res Hum Retroviruses 16, 1787–1795.[CrossRef]
    [Google Scholar]
  37. Wlodawer, A. & Gustchina, A. ( 2000; ). Structural and biochemical studies of retroviral proteases. Biochim Biophys Acta 1477, 16–34.[CrossRef]
    [Google Scholar]
  38. Wlodawer, A., Gustchina, A., Reshetnikova, L., Lubkowski, J., Zdanov, A., Hui, K. Y., Angleton, E. L., Farmerie, W. G., Goodenow, M. M. & other authors ( 1995; ). Structure of an inhibitor complex of the proteinase from feline immunodeficiency virus. Nat Struct Biol 2, 480–488.[CrossRef]
    [Google Scholar]
  39. Wu, J., Adomat, J. M., Ridky, T. W., Louis, J. M., Leis, J., Harrison, R. W. & Weber, I. T. ( 1998; ). Structural basis for specificity of retroviral proteases. Biochemistry 37, 4518–4526.[CrossRef]
    [Google Scholar]
  40. Zahuczky, G., Boross, P., Bagossi, P., Emri, G., Copeland, T. D., Oroszlan, S., Louis, J. M. & Tözsér, J. ( 2000; ). Cloning of the bovine leukemia virus proteinase in Escherichia coli and comparison of its specificity to that of human T-cell leukemia virus proteinase. Biochim Biophys Acta 1478, 1–8.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82704-0
Loading
/content/journal/jgv/10.1099/vir.0.82704-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error