1887

Abstract

Bovine leukemia virus (BLV) is a valuable model system for understanding human T-lymphotropic virus 1 (HTLV-1); the availability of an infectious BLV clone, together with animal-model systems, will help to explore anti-HTLV-1 strategies. Nevertheless, the specificity and inhibitor sensitivity of the BLV protease (PR) have not been characterized in detail. To facilitate such studies, a molecular model for the enzyme was built. The specificity of the BLV PR was studied with a set of oligopeptides representing naturally occurring cleavage sites in various retroviruses. Unlike HTLV-1 PR, but similar to the human immunodeficiency virus 1 (HIV-1) enzyme, BLV PR was able to hydrolyse the majority of the peptides, mostly at the same position as did their respective host PRs, indicating a broad specificity. When amino acid residues of the BLV PR substrate-binding sites were replaced by equivalent ones of the HIV-1 PR, many substitutions resulted in inactive protein, indicating a great sensitivity to mutations, as observed previously for the HTLV-1 PR. The specificity of the enzyme was studied further by using a series of peptides containing amino acid substitutions in a sequence representing a naturally occurring HTLV-1 PR cleavage site. Also, inhibitors of HIV-1 PR, HTLV-1 PR and other retroviral proteases were tested on the BLV PR. Interestingly, the BLV PR was more susceptible than the HTLV-1 PR to the inhibitors tested. Therefore, despite the specificity differences, in terms of mutation intolerance and inhibitor susceptibility of the PR, BLV and the corresponding animal-model systems may provide good models for testing of PR inhibitors that target HTLV-1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82704-0
2007-07-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/2052.html?itemId=/content/journal/jgv/10.1099/vir.0.82704-0&mimeType=html&fmt=ahah

References

  1. Altanerova V., Holicova D., Kucerova L., Altaner C., Lairmore M. D., Boris-Lawrie K. 2004; Long-term infection with retroviral structural gene vector provides protection against bovine leukemia virus disease in rabbits. Virology 329:434–439 [CrossRef]
    [Google Scholar]
  2. Baboonian C., Dalgleish A., Bountiff L., Gross J., Oroszlan S., Rickett G., Smith-Burchnell C., Troke P., Merson J. 1991; HIV-1 proteinase is required for synthesis of pro-viral DNA. Biochem Biophys Res Commun 179:17–24 [CrossRef]
    [Google Scholar]
  3. Bagossi P., Kadas J., Miklossy G., Boross P., Weber I. T., Tozser J. 2004; Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases. J Virol Methods 119:87–93 [CrossRef]
    [Google Scholar]
  4. Bagossi P., Sperka T., Feher A., Kadas J., Zahuczky G., Miklossy G., Boross P., Tozser J. 2005; Amino acid preferences for a critical substrate binding subsite of retroviral proteases in type 1 cleavage sites. J Virol 79:4213–4218 [CrossRef]
    [Google Scholar]
  5. Buehring G. C., Philpott S. M., Choi K. Y. 2003; Humans have antibodies reactive with bovine leukemia virus. AIDS Res Hum Retroviruses 19:1105–1113 [CrossRef]
    [Google Scholar]
  6. Cameron C. E., Grinde B., Jacques P., Jentoft J., Leis J., Wlodawer A., Weber I. T. 1993; Comparison of the substrate-binding pockets of the Rous sarcoma virus and human immunodeficiency virus type 1 proteases. J Biol Chem 268:11711–11720
    [Google Scholar]
  7. De Clercq E. 2004; Antiviral drugs in current clinical use. J Clin Virol 30:115–133 [CrossRef]
    [Google Scholar]
  8. Fenyöfalvi G., Bagossi P., Copeland T. D., Oroszlan S., Boross P., Tözsér J. 1999; Expression and characterization of human foamy virus proteinase. FEBS Lett 462:397–401 [CrossRef]
    [Google Scholar]
  9. Fersht A. R. 1985; Utilization of enzyme-substrate binding energy in catalysis. In Enzyme Structure and Mechanism , 2nd edn. pp 311–317 New York: W. H. Freeman;
    [Google Scholar]
  10. Griffiths J. T., Phylip L. H., Konvalinka J., Strop P., Gustchina A., Wlodawer A., Davenport R. J., Briggs R., Dunn B. M., Kay J. 1992; Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing -hydrophobic*hydrophobic- or -aromatic*pro- cleavage sites. Biochemistry 31:5193–5200 [CrossRef]
    [Google Scholar]
  11. Grobelny D., Wondrak E. M., Galardy R. E., Oroszlan S. 1990; Selective phosphinate transition-state analogue inhibitors of the protease of human immunodeficiency virus. Biochem Biophys Res Commun 169:1111–1116 [CrossRef]
    [Google Scholar]
  12. Gustchina A., Kervinen J., Powell D. J., Zdanov A., Kay J., Wlodawer A. 1996; Structure of equine infectious anemia virus proteinase complexed with an inhibitor. Protein Sci 5:1453–1465 [CrossRef]
    [Google Scholar]
  13. Harrison R. W. 1993; Stiffness and energy conservation in molecular dynamics: an improved integrator. J Comput Chem 14:1112–1122 [CrossRef]
    [Google Scholar]
  14. Harrison R. W. 2000; A self-assembling neural network for modeling polymers. J Math Chem 26:125–138
    [Google Scholar]
  15. Hayakawa T., Misumi Y., Kobayashi M., Yamamoto Y., Fujisawa Y. 1992; Requirement of N- and C-terminal regions for enzymatic activity of human T-cell leukemia virus type I protease. Eur J Biochem 206:919–925 [CrossRef]
    [Google Scholar]
  16. Herger B. E., Mariani V. L., Dennison K., Shuker S. B. 2004; The 10 C-terminal residues of HTLV-I protease are not necessary for enzymatic activity. Biochem Biophys Res Commun 320:1306–1308 [CrossRef]
    [Google Scholar]
  17. Kádas J., Weber I. T., Bagossi P., Miklóssy G., Boross P., Oroszlan S., Tözsér J. 2004; Narrow substrate specificity and sensitivity towards ligand binding site mutations of human T-cell leukemia virus type-1 protease. J Biol Chem 279:27148–27157 [CrossRef]
    [Google Scholar]
  18. Leis J., Baltimore D., Bishop J. M., Coffin J., Fleissner E., Goff S. P., Oroszlan S., Robinson H., Skalka A. M. other authors 1988; Standardized and simplified nomenclature for proteins common to all retroviruses. J Virol 62:1808–1809
    [Google Scholar]
  19. Lemey P., Van Dooren S., Vandamme A. M. 2005; Evolutionary dynamics of human retroviruses investigated through full-genome scanning. Mol Biol Evol 22:942–951 [CrossRef]
    [Google Scholar]
  20. Li M., Laco G. S., Jaskolski M., Rozycki J., Alexandratos J., Wlodawer A., Gustchina A. 2005; Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design. Proc Natl Acad Sci U S A 102:18332–18337 [CrossRef]
    [Google Scholar]
  21. Louis J. M., Oroszlan S., Tözsér J. 1999; Stabilization from autoproteolysis and kinetic characterization of the human T-cell leukemia virus type 1 proteinase. J Biol Chem 274:6660–6666 [CrossRef]
    [Google Scholar]
  22. Menendez-Arias L., Gotte D., Oroszlan S. 1993; Moloney murine leukemia virus protease: bacterial expression and characterization of the purified enzyme. Virology 196:557–563 [CrossRef]
    [Google Scholar]
  23. Pettit S. C., Simsic J., Loeb D. D., Everitt L., Hutchison C. A. III, Swanstrom R. 1991; Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem 266:14539–14547
    [Google Scholar]
  24. Powell D. J., Bur D., Wlodawer A., Gustchina A., Payne S. L., Dunn B. M., Kay J. 1996; Expression, characterisation and mutagenesis of the aspartic proteinase from equine infectious anaemia virus. Eur J Biochem 241:664–674 [CrossRef]
    [Google Scholar]
  25. Precigoux G., Geoffre S., Leonard R., Llido S., Dautant A., d'Estaintot B. L., Picard P., Menard A., Guillemain B., Hospital M. 1993; Modelling, synthesis and biological activity of a BLV proteinase, made of (only) 116 amino acids. FEBS Lett 326:237–240 [CrossRef]
    [Google Scholar]
  26. Prejdova J., Soucek M., Konvalinka J. 2004; Determining and overcoming resistance to HIV protease inhibitors. Curr Drug Targets Infect Disord 4:137–152 [CrossRef]
    [Google Scholar]
  27. Sayle R. A., Milner-White E. J. 1995; rasmol: biomolecular graphics for all. Trends Biochem Sci 20:374 [CrossRef]
    [Google Scholar]
  28. Sheremata W. A., Benedict D., Squilacote D. C., Sazant A., DeFreitas E. 1993; High-dose zidovudine induction in HTLV-I-associated myelopathy: safety and possible efficacy. Neurology 43:2125–2129 [CrossRef]
    [Google Scholar]
  29. Tözsér J. 1997; Specificity of retroviral proteinases based on substrates containing tyrosine and proline at the site of cleavage. Pathol Oncol Res 3:142–146 [CrossRef]
    [Google Scholar]
  30. Tözsér J., Oroszlan S. 2003; Proteolytic events of HIV-1 replication as targets for therapeutic intervention. Curr Pharm Des 9:1803–1815 [CrossRef]
    [Google Scholar]
  31. Tözsér J., Weber I. T., Gustchina A., Blaha I., Copeland T. D., Louis J. M., Oroszlan S. 1992; Kinetic and modeling studies of S3–S3′ subsites of HIV proteinases. Biochemistry 31:4793–4800 [CrossRef]
    [Google Scholar]
  32. Tözsér J., Bagossi P., Weber I. T., Copeland T. D., Oroszlan S. 1996; Comparative studies on the substrate specificity of avian myeloblastosis virus proteinase and lentiviral proteinases. J Biol Chem 271:6781–6788 [CrossRef]
    [Google Scholar]
  33. Tözsér J., Zahuczky G., Bagossi P., Louis J. M., Copeland T. D., Oroszlan S., Harrison R. W., Weber I. T. 2000; Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases. Eur J Biochem 267:6287–6295 [CrossRef]
    [Google Scholar]
  34. Weber I. T. 1991; Modeling of structure of human immunodeficiency virus-1 protease with substrate based on crystal structure of Rous sarcoma virus protease. Methods Enzymol 202:727–741
    [Google Scholar]
  35. Willems L., Kerkhofs P., Attenelle L., Burny A., Portetelle D., Kettmann R. 1997; The major homology region of bovine leukaemia virus p24gag is required for virus infectivity in vivo. J Gen Virol 78:637–640
    [Google Scholar]
  36. Willems L., Burny A., Collete D., Dangoisse O., Dequiedt F., Gatot J. S., Kerkhofs P., Lefebvre L., Merezak C. other authors 2000; Genetic determinants of bovine leukemia virus pathogenesis. AIDS Res Hum Retroviruses 16:1787–1795 [CrossRef]
    [Google Scholar]
  37. Wlodawer A., Gustchina A. 2000; Structural and biochemical studies of retroviral proteases. Biochim Biophys Acta 1477:16–34 [CrossRef]
    [Google Scholar]
  38. Wlodawer A., Gustchina A., Reshetnikova L., Lubkowski J., Zdanov A., Hui K. Y., Angleton E. L., Farmerie W. G., Goodenow M. M. other authors 1995; Structure of an inhibitor complex of the proteinase from feline immunodeficiency virus. Nat Struct Biol 2:480–488 [CrossRef]
    [Google Scholar]
  39. Wu J., Adomat J. M., Ridky T. W., Louis J. M., Leis J., Harrison R. W., Weber I. T. 1998; Structural basis for specificity of retroviral proteases. Biochemistry 37:4518–4526 [CrossRef]
    [Google Scholar]
  40. Zahuczky G., Boross P., Bagossi P., Emri G., Copeland T. D., Oroszlan S., Louis J. M., Tözsér J. 2000; Cloning of the bovine leukemia virus proteinase in Escherichia coli and comparison of its specificity to that of human T-cell leukemia virus proteinase. Biochim Biophys Acta 14781–8 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82704-0
Loading
/content/journal/jgv/10.1099/vir.0.82704-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error