1887

Abstract

Epstein–Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) is an attractive target for immunotherapy against EBV-associated malignancies because it is expressed in all EBV-positive cells. Although CD8 cytotoxic T-lymphocyte (CTL) epitope presentation is largely prevented by its glycine–alanine-repeat domain (GAr), the use of mRNA-transduced dendritic cells (DCs) would offer the advantage of priming EBNA1-specific CTLs. After stimulation with GAr-containing EBNA1-transduced monocyte-derived DCs, two EBNA1-specific CTL clones, B5 and C6, were isolated successfully from a healthy donor. These CTLs recognize peptides in the context of HLA-B*3501 and HLA-Cw*0303, respectively. A novel epitope, FVYGGSKTSL, was then identified, presented by both HLA-Cw*0303 and -Cw*0304, which are expressed by >35 % of Japanese, >20 % of Northern Han Chinese and >25 % of Caucasians. The mixed lymphocyte–peptide culture method revealed that FVYGGSKTSL-specific CTL-precursor frequencies in HLA-Cw*0303- or -Cw*0304-positive donors were between 1×10 and 1×10 CD8 T cells. Moreover, both CTL clones inhibited growth of HLA-matched EBV-transformed B lymphocytes , and B5 CTLs produced a gamma interferon response to EBNA1-expressing gastric carcinoma cells in the context of HLA-Cw*0303. These data demonstrate that EBNA1 mRNA-transduced DCs may be useful tools for inducing EBNA1-specific CTLs that might be of clinical interest for CTL therapy of EBV-associated malignancies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82519-0
2007-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/3/770.html?itemId=/content/journal/jgv/10.1099/vir.0.82519-0&mimeType=html&fmt=ahah

References

  1. Akatsuka, Y., Goldberg, T. A., Kondo, E., Martin, E. G., Obata, Y., Morishima, Y., Takahashi, T. & Hansen, J. A. ( 2002; ). Efficient cloning and expression of HLA class I cDNA in human B-lymphoblastoid cell lines. Tissue Antigens 59, 502–511.[CrossRef]
    [Google Scholar]
  2. Babcock, G. J., Hochberg, D. & Thorley-Lawson, A. D. ( 2000; ). The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497–506.[CrossRef]
    [Google Scholar]
  3. Bai, Y., Soda, Y., Izawa, K., Tanabe, T., Kang, X., Tojo, A., Hoshino, H., Miyoshi, H., Asano, S. & Tani, K. ( 2003; ). Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector. Gene Ther 10, 1446–1457.[CrossRef]
    [Google Scholar]
  4. Bickham, K., Munz, C., Tsang, M. L., Larsson, M., Fonteneau, J. F., Bhardwaj, N. & Steinman, R. ( 2001; ). EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J Clin Invest 107, 121–130.[CrossRef]
    [Google Scholar]
  5. Blake, N., Lee, S., Redchenko, I., Thomas, W., Steven, N., Leese, A., Steigerwald-Mullen, P., Kurilla, M. G., Frappier, L. & Rickinson, A. ( 1997; ). Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7, 791–802.[CrossRef]
    [Google Scholar]
  6. Blake, N., Haigh, T., Shaka'a, G., Croom-Carter, D. & Rickinson, A. ( 2000; ). The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 165, 7078–7087.[CrossRef]
    [Google Scholar]
  7. Bollard, C. M., Aguilar, L., Straathof, K. C., Gahn, B., Huls, M. H., Rousseau, A., Sixbey, J., Gresik, M. V., Carrum, G. & other authors ( 2004; ). Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin's disease. J Exp Med 200, 1623–1633.[CrossRef]
    [Google Scholar]
  8. Callan, M. F., Tan, L., Annels, N., Ogg, G. S., Wilson, J. D., O'Callaghan, C. A., Steven, N., McMichael, A. J. & Rickinson, A. B. ( 1998; ). Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187, 1395–1402.[CrossRef]
    [Google Scholar]
  9. Coulie, P. G., Karanikas, V., Colau, D., Lurquin, C., Landry, C., Marchand, M., Dorval, T., Brichard, V. & Boon, T. ( 2001; ). A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci U S A 98, 10290–10295.[CrossRef]
    [Google Scholar]
  10. Dauer, M., Obermaier, B., Herten, J., Haerle, C., Pohl, K., Rothenfusser, S., Schnurr, M., Endres, S. & Eigler, A. ( 2003; ). Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol 170, 4069–4076.[CrossRef]
    [Google Scholar]
  11. Gottschalk, S., Rooney, C. M. & Heslop, H. E. ( 2005; ). Post-transplant lymphoproliferative disorders. Annu Rev Med 56, 29–44.[CrossRef]
    [Google Scholar]
  12. Grunebach, F., Muller, M. R., Nencioni, A. & Brossart, P. ( 2003; ). Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther 10, 367–374.[CrossRef]
    [Google Scholar]
  13. Heiser, A., Dahm, P., Yancey, D. R., Maurice, M. A., Boczkowski, D., Nair, S. K., Gilboa, E. & Vieweg, J. ( 2000; ). Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol 164, 5508–5514.[CrossRef]
    [Google Scholar]
  14. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M. A., Lallas, C. D., Dahm, P., Niedzwiecki, D., Gilboa, E. & Vieweg, J. ( 2002; ). Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109, 409–417.[CrossRef]
    [Google Scholar]
  15. Hong, W., Fu, Y., Chen, S., Wang, F., Ren, X. & Xu, A. ( 2005; ). Distributions of HLA class I alleles and haplotypes in Northern Han Chinese. Tissue Antigens 66, 297–304.[CrossRef]
    [Google Scholar]
  16. Khanna, R., Burrows, S. R., Kurilla, M. G., Jacob, C. A., Misko, I. S., Sculley, T. B., Kieff, E. & Moss, D. J. ( 1992; ). Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176, 169–176.[CrossRef]
    [Google Scholar]
  17. Khanna, R., Burrows, S. R., Steigerwald-Mullen, P. M., Thomson, S. A., Kurilla, M. G. & Moss, D. J. ( 1995; ). Isolation of cytotoxic T lymphocytes from healthy seropositive individuals specific for peptide epitopes from Epstein-Barr virus nuclear antigen 1: implications for viral persistence and tumor surveillance. Virology 214, 633–637.[CrossRef]
    [Google Scholar]
  18. Khanna, R., Burrows, S. R., Steigerwald-Mullen, P. M., Moss, D. J., Kurilla, M. G. & Cooper, L. ( 1997; ). Targeting Epstein-Barr virus nuclear antigen 1 (EBNA1) through the class II pathway restores immune recognition by EBNA1-specific cytotoxic T lymphocytes: evidence for HLA-DM-independent processing. Int Immunol 9, 1537–1543.[CrossRef]
    [Google Scholar]
  19. Kieff, E. & Rickinson, A. B. ( 2001; ). Epstein-Barr virus and its replication. In Fields Virology, 4th edn, pp. 2511–2573. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  20. Kondo, E., Topp, M. S., Kiem, H. P., Obata, Y., Morishima, Y., Kuzushima, K., Tanimoto, M., Harada, M., Takahashi, T. & Akatsuka, Y. ( 2002; ). Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol 169, 2164–2171.[CrossRef]
    [Google Scholar]
  21. Kruger, S., Schroers, R., Rooney, C. M., Gahn, B. & Chen, S. Y. ( 2003; ). Identification of a naturally processed HLA-DR-restricted T-helper epitope in Epstein-Barr virus nuclear antigen type 1. J Immunother 26, 212–221.[CrossRef]
    [Google Scholar]
  22. Kuzushima, K., Hoshino, Y., Fujii, K., Yokoyama, N., Fujita, M., Kiyono, T., Kimura, H., Morishima, T., Morishima, Y. & Tsurumi, T. ( 1999; ). Rapid determination of Epstein-Barr virus-specific CD8(+) T-cell frequencies by flow cytometry. Blood 94, 3094–3100.
    [Google Scholar]
  23. Kuzushima, K., Hayashi, N., Kimura, H. & Tsurumi, T. ( 2001; ). Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8(+) T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood 98, 1872–1881.[CrossRef]
    [Google Scholar]
  24. Kuzushima, K., Hayashi, N., Kudoh, A., Akatsuka, Y., Tsujimura, K., Morishima, Y. & Tsurumi, T. ( 2003; ). Tetramer-assisted identification and characterization of epitopes recognized by HLA A*2402-restricted Epstein-Barr virus-specific CD8+ T cells. Blood 101, 1460–1468.[CrossRef]
    [Google Scholar]
  25. Lee, S. P., Brooks, J. M., Al-Jarrah, H., Thomas, W. A., Haigh, T. A., Taylor, G. S., Humme, S., Schepers, A., Hammerschmidt, W. & other authors ( 2004; ). CD8 T cell recognition of endogenously expressed Epstein-Barr virus nuclear antigen 1. J Exp Med 199, 1409–1420.[CrossRef]
    [Google Scholar]
  26. Leen, A., Meij, P., Redchenko, I., Middeldorp, J., Bloemena, E., Rickinson, A. & Blake, N. ( 2001; ). Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol 75, 8649–8659.[CrossRef]
    [Google Scholar]
  27. Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., Kurilla, M. G. & Masucci, M. G. ( 1995; ). Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685–688.[CrossRef]
    [Google Scholar]
  28. Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G. ( 1997; ). Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A 94, 12616–12621.[CrossRef]
    [Google Scholar]
  29. Muller, M. R., Tsakou, G., Grunebach, F., Schmidt, S. M. & Brossart, P. ( 2004; ). Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 103, 1763–1769.[CrossRef]
    [Google Scholar]
  30. Munz, C., Bickham, K. L., Subklewe, M., Tsang, M. L., Chahroudi, A., Kurilla, M. G., Zhang, D., O'Donnell, M. & Steinman, R. M. ( 2000; ). Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med 191, 1649–1660.[CrossRef]
    [Google Scholar]
  31. Murray, R. J., Kurilla, M. G., Brooks, J. M., Thomas, W. A., Rowe, M., Kieff, E. & Rickinson, A. B. ( 1992; ). Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 176, 157–168.[CrossRef]
    [Google Scholar]
  32. Nair, S. K., Boczkowski, D., Morse, M., Cumming, R. I., Lyerly, H. K. & Gilboa, E. ( 1998; ). Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16, 364–369.[CrossRef]
    [Google Scholar]
  33. Nair, S. K., Heiser, A., Boczkowski, D., Majumdar, A., Naoe, M., Lebkowski, J. S., Vieweg, J. & Gilboa, E. ( 2000; ). Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 6, 1011–1017.[CrossRef]
    [Google Scholar]
  34. Paludan, C., Bickham, K., Nikiforow, S., Tsang, M. L., Goodman, K., Hanekom, W. A., Fonteneau, J. F., Stevanovic, S. & Munz, C. ( 2002; ). Epstein-Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt's lymphoma cells. J Immunol 169, 1593–1603.[CrossRef]
    [Google Scholar]
  35. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. ( 1999; ). syfpeithi: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.[CrossRef]
    [Google Scholar]
  36. Rickinson, A. B. & Moss, D. J. ( 1997; ). Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 15, 405–431.[CrossRef]
    [Google Scholar]
  37. Rickinson, A. B. & Kieff, E. ( 2001; ). Epstein-Barr Virus. In Fields Virology, 4th edn, pp. 2575–2627. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  38. Romani, N., Gruner, S., Brang, D., Kampgen, E., Lenz, A., Trockenbacher, B., Konwalinka, G., Fritsch, P. O., Steinman, R. M. & Schuler, G. ( 1994; ). Proliferating dendritic cell progenitors in human blood. J Exp Med 180, 83–93.[CrossRef]
    [Google Scholar]
  39. Sallusto, F. & Lanzavecchia, A. ( 1994; ). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179, 1109–1118.[CrossRef]
    [Google Scholar]
  40. Schultze, J. L., Michalak, S., Seamon, M. J., Dranoff, G., Jung, K., Daley, J., Delgado, J. C., Gribben, J. G. & Nadler, L. M. ( 1997; ). CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 100, 2757–2765.[CrossRef]
    [Google Scholar]
  41. Steven, N. M., Leese, A. M., Annels, N. E., Lee, S. P. & Rickinson, A. B. ( 1996; ). Epitope focusing in the primary cytotoxic T cell response to Epstein-Barr virus and its relationship to T cell memory. J Exp Med 184, 1801–1813.[CrossRef]
    [Google Scholar]
  42. Straathof, K. C., Bollard, C. M., Popat, U., Huls, M. H., Lopez, T., Morriss, M. C., Gresik, M. V., Gee, A. P., Russell, H. V. & other authors ( 2005; ). Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood 105, 1898–1904.[CrossRef]
    [Google Scholar]
  43. Su, Z., Dannull, J., Heiser, A., Yancey, D., Pruitt, S., Madden, J., Coleman, D., Niedzwiecki, D., Gilboa, E. & Vieweg, J. ( 2003; ). Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63, 2127–2133.
    [Google Scholar]
  44. Tellam, J., Connolly, G., Green, K. J., Miles, J. J., Moss, D. J., Burrows, S. R. & Khanna, R. ( 2004; ). Endogenous presentation of CD8+ T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med 199, 1421–1431.[CrossRef]
    [Google Scholar]
  45. Van Tendeloo, V. F., Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., Van Broeckhoven, C., Van Bockstaele, D. R. & Berneman, Z. N. ( 2001; ). Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98, 49–56.[CrossRef]
    [Google Scholar]
  46. Voo, K. S., Fu, T., Heslop, H. E., Brenner, M. K., Rooney, C. M. & Wang, R. F. ( 2002; ). Identification of HLA-DP3-restricted peptides from EBNA1 recognized by CD4(+) T cells. Cancer Res 62, 7195–7199.
    [Google Scholar]
  47. Voo, K. S., Fu, T., Wang, H. Y., Tellam, J., Heslop, H. E., Brenner, M. K., Rooney, C. M. & Wang, R. F. ( 2004; ). Evidence for the presentation of major histocompatibility complex class I-restricted Epstein-Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J Exp Med 199, 459–470.[CrossRef]
    [Google Scholar]
  48. Yin, Y., Manoury, B. & Fahraeus, R. ( 2003; ). Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301, 1371–1374.[CrossRef]
    [Google Scholar]
  49. Zeis, M., Siegel, S., Wagner, A., Schmitz, M., Marget, M., Kuhl-Burmeister, R., Adamzik, I., Kabelitz, D., Dreger, P. & other authors ( 2003; ). Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 170, 5391–5397.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82519-0
Loading
/content/journal/jgv/10.1099/vir.0.82519-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error