1887

Abstract

In the present study we determined the antiviral effect of amantadine against influenza A/Netherlands/219/03 (H7N7) virus in cell culture and in a mouse model. Amantadine at concentrations <100 μM failed to inhibit virus replication in Madin–Darby canine kidney (MDCK) cells. When orally administered to mice for 5 days, amantadine at 15 mg kg day did not protect animals against lethal challenge with H7N7 infection, and virus titres in mouse organs were not reduced. However, sequence analysis of the M2 protein revealed none of the mutations previously described as being associated with amantadine resistance. We used reverse genetics to generate viruses containing the haemagglutinin (HA) or M gene of A/Netherlands/219/03 virus to investigate the role of these genes in amantadine sensitivity. All recombinant viruses carrying the HA segment of A/Netherlands/219/03 (H7N7) virus were amantadine-resistant, regardless of the origin of their other genes. To study the role of fusion activity in the mechanism of drug resistance, we introduced the Gly→Cys mutation in the H7 fusion peptide. This substitution resulted in a decrease of the pH of fusion and was also associated with reduced virus replication in both MDCK cells and mice, as compared to that of the wild-type virus. We suggest that H7 HA protein plays a role in amantadine resistance, although all HA amino acids that participate in drug resistance still remain to be characterized. Our finding reveals that sequence analysis of the transmembrane domain of M2 protein may not adequately identify all drug-resistant variants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82256-0
2007-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1266.html?itemId=/content/journal/jgv/10.1099/vir.0.82256-0&mimeType=html&fmt=ahah

References

  1. Appleyard, G. ( 1977; ). Amantadine-resistance as a genetic marker for influenza viruses. J Gen Virol 36, 249–255.[CrossRef]
    [Google Scholar]
  2. Belshe, R. B., Burk, B., Newman, F., Cerruti, R. L. & Sim, I. S. ( 1989; ). Resistance of influenza A virus to amantadine and rimantadine: results of one decade of surveillance. J Infect Dis 159, 430–435.[CrossRef]
    [Google Scholar]
  3. Betakova, T., Ciampor, F. & Hay, A. J. ( 2005; ). Influence of residue 44 on the activity of the M2 proton channel of influenza A virus. J Gen Virol 86, 181–184.[CrossRef]
    [Google Scholar]
  4. Daniels, R. S., Downie, J. C., Hay, A. J., Knossow, M., Skehel, J. J., Wang, M. L. & Wiley, D. C. ( 1985; ). Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40, 431–439.[CrossRef]
    [Google Scholar]
  5. Doms, R. W., Cething, M.-J., Henneberry, J., White, J. & Helenius, A. ( 1986; ). A variant influenza virus hemagglutinin that induces fusion at elevated pH. J Virol 57, 603–613.
    [Google Scholar]
  6. Fouchier, R. A., Scheeberger, P. M., Rozendaal, F. W., Broekman, J. M., Kemink, S. A., Munster, V., Kuiken, T., Rimmelzwaan, G. F., Schutten, M. & other authors ( 2004; ). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101, 1356–1361.[CrossRef]
    [Google Scholar]
  7. Gething, M.-J., Doms, R. W., York, D. & White, J. ( 1986; ). Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol 102, 11–23.[CrossRef]
    [Google Scholar]
  8. Grambas, S. & Hay, A. J. ( 1992; ). Maturation of influenza A virus hemagglutinin – estimates of the pH encountered during transport and its regulation by the M2 protein. Virology 190, 11–18.[CrossRef]
    [Google Scholar]
  9. Grambas, S., Bennett, M. S. & Hay, A. J. ( 1992; ). Influence of amantadine resistance mutations on the pH regulatory function of the M2 protein of influenza A viruses. Virology 191, 541–549.[CrossRef]
    [Google Scholar]
  10. Hay, A. J. & Zambon, M. C. ( 1984; ). Multiple actions of amantadine against influenza viruses. In Antiviral Drugs and Interferon: The Molecular Basis of their Activity, pp. 301–315. Edited by Y. Becker. Boston, MA: Martinus Nijhoff Publishing.
  11. Hay, A. J., Wolstenholme, A. J., Skehel, J. J. & Smith, M. H. ( 1985; ). The molecular basis of the specific anti-influenza action of amantadine. EMBO J 4, 3021–3024.
    [Google Scholar]
  12. Hayden, F. G., Cote, K. M. & Douglas, R. G. ( 1980; ). Plaque inhibition assay for drug susceptibility testing of influenza viruses. Antimicrob Agents Chemother 17, 865–870.[CrossRef]
    [Google Scholar]
  13. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108–6113.[CrossRef]
    [Google Scholar]
  14. Ilyushina, N. A., Govorkova, E. A. & Webster, R. G. ( 2005; ). Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology 341, 102–106.[CrossRef]
    [Google Scholar]
  15. Kato, N. & Eggers, H. J. ( 1969; ). Inhibition of uncoating of fowl plaque virus by l-adamantanamine hydrochloride. Virology 37, 632–641.[CrossRef]
    [Google Scholar]
  16. Kermode-Scott, B. ( 2004; ). WHO confirms avian flu infections in Canada. BMJ 328, 913
    [Google Scholar]
  17. Koopmans, M., Wilbrink, B., Conyn, M., Natrop, G., van der Nat, H., Vennema, H., Meijer, A., van Steenbergen, J., Fouchier, R. & other authors ( 2004; ). Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363, 587–593.[CrossRef]
    [Google Scholar]
  18. Monto, A. S. ( 2003; ). The role of antivirals in the control of influenza. Vaccine 21, 1796–1800.[CrossRef]
    [Google Scholar]
  19. Nicholson, K. G. & Wiselka, M. J. ( 1991; ). Amantadine for influenza A. BMJ 302, 425–426.[CrossRef]
    [Google Scholar]
  20. Pinto, L. H., Holsinger, L. J. & Lamb, R. A. ( 1992; ). Influenza virus M2 protein has ion channel activity. Cell 69, 517–528.[CrossRef]
    [Google Scholar]
  21. Reed, L. J. & Muench, H. ( 1938; ). A simple method for estimating 50 % endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  22. Rott, R., Orlich, M., Klenk, H.-D., Wang, M. L., Skehel, J. J. & Wiley, D. C. ( 1984; ). Studies in the adaptation of influenza viruses to MDCK cells. EMBO J 3, 3329–3332.
    [Google Scholar]
  23. Russell, C. J., Kantor, K. L., Jardetzky, T. S. & Lamb, R. A. ( 2003; ). A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion. J Cell Biol 163, 363–374.[CrossRef]
    [Google Scholar]
  24. Russell, R. J., Gamblin, S. J., Haire, L. F., Stevens, D. J., Xiao, B., Ha, Y. & Skehel, J. J. ( 2004; ). H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology 325, 287–296.[CrossRef]
    [Google Scholar]
  25. Salomon, R., Franks, J., Govorkova, E. A., Ilyushina, N. A., Yen, H. L., Hulse-Post, D. J., Humberd, J., Trichet, M., Rehg, J. E. & other authors ( 2006; ). The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 203, 689–697.[CrossRef]
    [Google Scholar]
  26. Scholtissek, C. & Faulkner, G. P. ( 1979; ). Amantadine-resistant and -sensitive influenza A strains and recombinants. J Gen Virol 44, 807–815.[CrossRef]
    [Google Scholar]
  27. Segal, M. S., Bye, J. M., Sambrook, J. F. & Gething, M. J. ( 1992; ). Disulfide bond formation during the folding of influenza virus hemagglutinin. J Cell Biol 118, 227–244.[CrossRef]
    [Google Scholar]
  28. Skehel, J. J. & Wiley, D. C. ( 2000; ). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69, 531–569.[CrossRef]
    [Google Scholar]
  29. Steinhauer, D. A., Wharton, S. A., Skehel, J. J., Whiley, D. C. & Hay, A. J. ( 1991; ). Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: evidence for virus-specific regulation of the pH of glycoprotein transport vesicles. Proc Natl Acad Sci U S A 88, 11525–11529.[CrossRef]
    [Google Scholar]
  30. Steinhauer, D. A., Martin, J., Lin, Y. P., Wharton, S. A., Oldstone, M. B. A., Skehel, J. J. & Whiley, D. C. ( 1996; ). Studies using double mutants of the conformational transitions in influenza haemagglutinin required for its membrane fusion activity. Proc Natl Acad Sci U S A 93, 12873–12878.[CrossRef]
    [Google Scholar]
  31. Weis, W. I., Gusack, S. C., Brown, J. H., Daniels, R. S., Skehel, J. J. & Wiley, D. C. ( 1990; ). The structure of a membrane fusion mutant of the influenza virus haemagglutinin. EMBO J 9, 17–24.
    [Google Scholar]
  32. Wharton, S. A., Skehel, J. J. & Wiley, D. C. ( 1986; ). Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149, 27–35.[CrossRef]
    [Google Scholar]
  33. White, J., Kielan, M. & Helenius, A. ( 1983; ). Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys 16, 151–195.[CrossRef]
    [Google Scholar]
  34. Wiley, D. C. & Skehel, J. J. ( 1987; ). The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56, 365–394.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82256-0
Loading
/content/journal/jgv/10.1099/vir.0.82256-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error