1887

Abstract

Small immunoproteins (SIPs) are single-chain molecules comprising the variable regions of an antibody assembled in a single polypeptide (scFv) and joined to the immunoglobulin heavy-chain dimerizing domain. To investigate the potential of these molecules to provide protection against enteric infections when supplied orally, SIPs were generated against (TGEV), a highly pathogenic porcine virus. Different variants of TGEV-specific SIPs were created, of and isotypes, by exploiting the dimerizing domains CH4 and CH3 of human and swine origin. Transfected cells secreted these recombinant mini-antibodies efficiently, mainly as dimers stabilized covalently by inter-chain disulphide bridges. The specificity and functionality of the recombinant TGEV-specific SIPs were determined by binding, neutralization and infection-interference assays. The neutralization indices of the TGEV-specific SIPs were all very similar to that of the original TGEV-specific mAb, thus confirming that the immunological properties have been preserved in the recombinant SIPs. protection experiments on newborn piglets have, in addition, demonstrated a strong reduction of virus titre in infected tissues of animals treated orally with TGEV-specific SIPs. It has therefore been demonstrated that it is possible to confer passive immunization to newborn pigs by feeding them with recombinant SIPs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82192-0
2007-01-01
2021-05-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/187.html?itemId=/content/journal/jgv/10.1099/vir.0.82192-0&mimeType=html&fmt=ahah

References

  1. Alamillo J. M., Monger W., Sola I., Garcia B., Perrin Y., Bestagno M., Burrone O. R., Sabella P., Plana-Duran J. other authors 2006; Use of virus vectors for the expression in plants of active full-length and single chain anti-coronavirus antibodies. Biotechnol J 1:1103–1111 [CrossRef]
    [Google Scholar]
  2. Batista F. D., Efremov D. G., Burrone O. R. 1996; Characterization of a second secreted IgE isoform and identification of an asymmetric pathway of IgE assembly. Proc Natl Acad Sci U S A 93:3399–3404 [CrossRef]
    [Google Scholar]
  3. Borsi L., Balza E., Bestagno M., Castellani P., Carnemolla B., Biro A., Leprini A., Sepulveda. J., Burrone O. other authors 2002; Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102:75–85 [CrossRef]
    [Google Scholar]
  4. Castilla J., Pintado B., Sola I., Sánchez-Morgado J. M., Enjuanes L. 1998; Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nat Biotechnol 16:349–354 [CrossRef]
    [Google Scholar]
  5. Correa I., Jiménez G., Suñé C., Bullido M. J., Enjuanes L. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res 10:77–93 [CrossRef]
    [Google Scholar]
  6. Correa I., Gebauer F., Bullido M. J., Suñé C., Baay M. F., Zwaagstra K. A., Posthumus W. P. A., Lenstra J. A., Enjuanes L. 1990; Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J Gen Virol 71:271–279 [CrossRef]
    [Google Scholar]
  7. Delmas B., Gelfi J., L'Haridon R., Vogel L. K., Sjöström H., Noren O., Laude H. 1992; Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–420 [CrossRef]
    [Google Scholar]
  8. Delmas B., Kut E., Gelfi J., Laude H. 1995; Overexpression of TGEV cell receptor impairs the production of virus particles. Adv Exp Med Biol 380:379–385
    [Google Scholar]
  9. Enjuanes L., Van der Zeijst B. A. M. 1995; Molecular basis of transmissible gastroenteritis virus epidemiology. In The Coronaviridae pp  337–376 Edited by Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  10. Escors D., Camafeita E., Ortego J., Laude H., Enjuanes L. 2001; Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J Virol 75:12228–12240 [CrossRef]
    [Google Scholar]
  11. Gebauer F., Posthumus W. P. A., Correa I., Suñé C., Smerdou C., Sánchez C. M., Lenstra J. A., Meloen R. H., Enjuanes L. 1991; Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology 183:225–238 [CrossRef]
    [Google Scholar]
  12. Hu S., Shively L., Raubitschek A., Sherman M., Williams L. E., Wong J. Y., Shively J. E., Wu A. M. 1996; Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–3061
    [Google Scholar]
  13. Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. J Virol 60:131–139
    [Google Scholar]
  14. Li E., Pedraza A., Bestagno M., Mancardi S., Sanchez R., Burrone O. 1997; Mammalian cell expression of dimeric small immune proteins (SIP). Protein Eng 10:731–736 [CrossRef]
    [Google Scholar]
  15. Monger W., Alamillo J. M., Sola I., Perrin Y., Bestagno M., Burrone O. R., Sabella P., Plana-Duran J., Enjuanes L. other authors 2006; An antibody derivative expressed from viral vectors passively immunizes pigs against transmissible gastroenteritis virus infection when supplied orally in crude plant extracts. Plant Biotechnol J 4:623–631 [CrossRef]
    [Google Scholar]
  16. Occhino M., Raffaghello L., Burrone O., Gambini C., Pistoia V., Corrias M. V., Bestagno M. 2004; Generation and characterization of dimeric small immunoproteins specific for neuroblastoma associated antigen GD2. Int J Mol Med 14:383–388
    [Google Scholar]
  17. Pack P., Müller K., Zahn R., Plückthun A. 1995; Tetravalent miniantibodies with high avidity assembling in Escherichia coli . J Mol Biol 246:28–34 [CrossRef]
    [Google Scholar]
  18. Sánchez C. M., Jiménez G., Laviada M. D., Correa I., Suñé C., Bullido M., Gebauer F., Smerdou C., Callebaut P. other authors 1990; Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174:410–417 [CrossRef]
    [Google Scholar]
  19. Sánchez C. M., Gebauer F., Suñé C., Méndez A., Dopazo J., Enjuanes L. 1992; Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190:92–105 [CrossRef]
    [Google Scholar]
  20. Sánchez C. M., Izeta A., Sánchez-Morgado J. M., Alonso S., Sola I., Balasch M., Plana-Duran J., Enjuanes L. 1999; Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73:7607–7618
    [Google Scholar]
  21. Sola I., Castilla J., Pintado B., Sánchez-Morgado J. M., Whitelaw C. B., Clark A. J., Enjuanes L. 1998; Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J Virol 72:3762–3772
    [Google Scholar]
  22. Suñé C., Jiménez G., Correa I., Bullido M. J., Gebauer F., Smerdou C., Enjuanes L. 1990; Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology 177:559–569 [CrossRef]
    [Google Scholar]
  23. Torres J. M., Sánchez C., Suñé C., Smerdou C., Prevec L., Graham F., Enjuanes L. 1995; Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein. Virology 213:503–516 [CrossRef]
    [Google Scholar]
  24. Winter G., Milstein C. 1991; Man-made antibodies. Nature 349:293–299 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82192-0
Loading
/content/journal/jgv/10.1099/vir.0.82192-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error