1887

Abstract

To gain insight into the role of cell surface glycosaminoglycans (GAG) in dengue virus (DEN) cell tropism and virulence, DEN-2 mouse brain-adapted vaccine candidate, neurovirulent prototype strain (NGC) and low-passage strain, PUO-218, were passaged in BHK-21 and SW13 cells to isolate variants with high affinity for GAG. Sequence comparisons of parent and passage variants revealed five GAG-binding determinants, which all cluster in a surface-exposed region in domain II of the three-dimensional structure of the DEN envelope protein. Using an infectious cDNA clone of NGC and an NGC/PUO-218 prM–E chimeric clone, it was demonstrated that the GAG-binding determinants augment the specific infectivity for BHK-21 and/or SW13 cells by 10- to 170-fold and in some cases marginally reduce that for Vero cells. This altered cell tropism was due to a greater dependence of the variants on cell surface GAG for attachment/entry, given their increased susceptibility to heparin inhibition. The effect of the GAG-binding determinants on virulence was examined in mice deficient in alpha/beta/gamma interferon responses. High GAG affinity strongly correlated with low neuroinvasiveness due to rapid virus clearance from the blood. It was speculated that this mechanism accounts for the attenuation in primates of some DEN vaccine candidates. Interestingly, the GAG-binding variants did not display marked attenuation of neurovirulence and the opposing effect of enhanced neurovirulence was associated with one determinant (Lys) already present in mouse brain-adapted NGC. This discrepancy of attenuated neuroinvasiveness and augmented neurovirulence may be reconciled by the existence of different mechanisms of virus dissemination in the brain and in extraneural tissues.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82164-0
2006-10-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/2791.html?itemId=/content/journal/jgv/10.1099/vir.0.82164-0&mimeType=html&fmt=ahah

References

  1. Bernard, K. A., Klimstra, W. B. & Johnston, R. E. ( 2000; ). Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276, 93–103.[CrossRef]
    [Google Scholar]
  2. Bernfield, M., Götte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J. & Zako, M. ( 1999; ). Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729–777.[CrossRef]
    [Google Scholar]
  3. Bray, M., Men, R., Tokimatsu, I. & Lai, C. J. ( 1998; ). Genetic determinants responsible for acquisition of dengue type 2 virus mouse neurovirulence. J Virol 72, 1647–1651.
    [Google Scholar]
  4. Burke, D. S. & Monath, T. P. ( 2001; ). Flaviviruses. In Fields Virology, 4th edn, pp. 1043–1126. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  5. Byrnes, A. P. & Griffin, D. E. ( 2000; ). Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J Virol 74, 644–651.[CrossRef]
    [Google Scholar]
  6. Chambers, T. J., Liang, Y., Droll, D. A., Schlesinger, J. J., Davidson, A. D., Wright, P. J. & Jiang, X. ( 2003; ). Yellow fever virus/dengue-2 virus and yellow fever virus/dengue-4 virus chimeras: biological characterization, immunogenicity, and protection against dengue encephalitis in the mouse model. J Virol 77, 3655–3668.[CrossRef]
    [Google Scholar]
  7. Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. ( 1997; ). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3, 866–871.[CrossRef]
    [Google Scholar]
  8. Eckels, K. H., Brandt, W. E., Harrison, V. R., McCown, J. M. & Russell, P. K. ( 1976; ). Isolation of a temperature-sensitive dengue-2 virus under conditions suitable for vaccine development. Infect Immun 14, 1221–1227.
    [Google Scholar]
  9. Eckels, K. H., Harrison, V. R., Summers, P. L. & Russell, P. K. ( 1980; ). Dengue-2 vaccine: preparation from a small-plaque virus clone. Infect Immun 27, 175–180.
    [Google Scholar]
  10. Esko, J. D. & Selleck, S. B. ( 2002; ). Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71, 435–471.[CrossRef]
    [Google Scholar]
  11. Fry, E. E., Lea, S. M., Jackson, T. & 7 other authors ( 1999; ). The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J 18, 543–554.[CrossRef]
    [Google Scholar]
  12. Germi, R., Crance, J. M., Garin, D., Guimet, J., Lortat-Jacob, H., Ruigrok, R. W., Zarski, J. P. & Drouet, E. ( 2002; ). Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292, 162–168.[CrossRef]
    [Google Scholar]
  13. Goto, A., Hayasaka, D., Yoshii, K., Mizutani, T., Kariwa, H. & Takashima, I. ( 2003; ). A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine 21, 4043–4051.[CrossRef]
    [Google Scholar]
  14. Gruenberg, A., Woo, W. S., Biedrzycka, A. & Wright, P. J. ( 1988; ). Partial nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue virus type 2, New Guinea C and PUO-218 strains. J Gen Virol 69, 1391–1398.[CrossRef]
    [Google Scholar]
  15. Gualano, R. C., Pryor, M. J., Cauchi, M. R., Wright, P. J. & Davidson, A. D. ( 1998; ). Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol 79, 437–446.
    [Google Scholar]
  16. Hahn, Y. S., Galler, R., Hunkapiller, T., Dalrymple, J. M., Strauss, J. H. & Strauss, E. G. ( 1988; ). Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology 162, 167–180.[CrossRef]
    [Google Scholar]
  17. Handel, T. M., Johnson, Z., Crown, S. E., Lau, E. K. & Proudfoot, A. E. ( 2005; ). Regulation of protein function by glycosaminoglycans – as exemplified by chemokines. Annu Rev Biochem 74, 385–410.[CrossRef]
    [Google Scholar]
  18. Hilgard, P. & Stockert, R. ( 2000; ). Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology 32, 1069–1077.[CrossRef]
    [Google Scholar]
  19. Hung, S. L., Lee, P. L., Chen, H. W., Chen, L. K., Kao, C. L. & King, C. C. ( 1999; ). Analysis of the steps involved in Dengue virus entry into host cells. Virology 257, 156–167.[CrossRef]
    [Google Scholar]
  20. Hung, J. J., Hsieh, M. T., Young, M. J., Kao, C. L., King, C. C. & Chang, W. ( 2004; ). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78, 378–388.[CrossRef]
    [Google Scholar]
  21. Jinno-Oue, A., Oue, M. & Ruscetti, S. K. ( 2001; ). A unique heparin-binding domain in the envelope protein of the neuropathogenic PVC-211 murine leukemia virus may contribute to its brain capillary endothelial cell tropism. J Virol 75, 12439–12445.[CrossRef]
    [Google Scholar]
  22. Johnson, A. J. & Roehrig, J. T. ( 1999; ). New mouse model for dengue virus vaccine testing. J Virol 73, 783–786.
    [Google Scholar]
  23. Kern, A., Schmidt, K., Leder, C., Muller, O. J., Wobus, C. E., Bettinger, K., Von der Lieth, C. W., King, J. A. & Kleinschmidt, J. A. ( 2003; ). Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77, 11072–11081.[CrossRef]
    [Google Scholar]
  24. Lee, E. & Lobigs, M. ( 2000; ). Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74, 8867–8875.[CrossRef]
    [Google Scholar]
  25. Lee, E. & Lobigs, M. ( 2002; ). Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76, 4901–4911.[CrossRef]
    [Google Scholar]
  26. Lee, E., Hall, R. A. & Lobigs, M. ( 2004; ). Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. J Virol 78, 8271–8280.[CrossRef]
    [Google Scholar]
  27. Lee, E., Pavy, M., Young, N., Freeman, C. & Lobigs, M. ( 2006; ). Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res 69, 31–38.[CrossRef]
    [Google Scholar]
  28. Lewis, J. A., Chang, G. J., Lanciotti, R. S., Kinney, R. M., Mayer, L. W. & Trent, D. W. ( 1993; ). Phylogenetic relationships of dengue-2 viruses. Virology 197, 216–224.[CrossRef]
    [Google Scholar]
  29. Licon Luna, R. M., Lee, E., Mullbacher, A., Blanden, R. V., Langman, R. & Lobigs, M. ( 2002; ). Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J Virol 76, 3202–3211.[CrossRef]
    [Google Scholar]
  30. Lin, Y. L., Lei, H. Y., Lin, Y. S., Yeh, T. M., Chen, S. H. & Liu, H. S. ( 2002; ). Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res 56, 93–96.[CrossRef]
    [Google Scholar]
  31. Lindahl, U., Kusche-Gullberg, M. & Kjellen, L. ( 1998; ). Regulated diversity of heparan sulfate. J Biol Chem 273, 24979–24982.[CrossRef]
    [Google Scholar]
  32. Lobigs, M., Usha, R., Nestorowicz, A., Marshall, I. D., Weir, R. C. & Dalgarno, L. ( 1990; ). Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 176, 587–595.[CrossRef]
    [Google Scholar]
  33. Mandl, C. W., Kroschewski, H., Allison, S. L., Kofler, R., Holzmann, H., Meixner, T. & Heinz, F. X. ( 2001; ). Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol 75, 5627–5637.[CrossRef]
    [Google Scholar]
  34. Marks, R. M., Lu, H., Sundaresan, R., Toida, T., Suzuki, A., Imanari, T., Hernaiz, M. J. & Linhardt, R. J. ( 2001; ). Probing the interaction of dengue virus envelope protein with heparin: assessment of glycosaminoglycan-derived inhibitors. J Med Chem 44, 2178–2187.[CrossRef]
    [Google Scholar]
  35. Meiklejohn, G., England, B. & Lennette, E. T. ( 1952; ). Propagation of dengue virus strains in unweaned mice. Am J Trop Med Hyg 1, 51–58.
    [Google Scholar]
  36. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef]
    [Google Scholar]
  37. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2005; ). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79, 1223–1231.[CrossRef]
    [Google Scholar]
  38. Ono, L., Wollinger, W., Rocco, I. M., Coimbra, T. L., Gorin, P. A. & Sierakowski, M. R. ( 2003; ). In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res 60, 201–208.[CrossRef]
    [Google Scholar]
  39. Perrimon, N. & Bernfield, M. ( 2000; ). Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404, 725–728.[CrossRef]
    [Google Scholar]
  40. Reddi, H. V., Kumar, A. S., Kung, A. Y., Kallio, P. D., Schlitt, B. P. & Lipton, H. L. ( 2004; ). Heparan sulfate-independent infection attenuates high-neurovirulence GDVII virus-induced encephalitis. J Virol 78, 8909–8916.[CrossRef]
    [Google Scholar]
  41. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. ( 1995; ). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298.[CrossRef]
    [Google Scholar]
  42. Rostand, K. S. & Esko, J. D. ( 1997; ). Microbial adherence to and invasion through proteoglycans. Infect Immun 65, 1–8.
    [Google Scholar]
  43. Sabin, A. B. ( 1952; ). Research on dengue during World War II. Am J Trop Med Hyg 1, 30–50.
    [Google Scholar]
  44. Sabin, A. B. ( 1955; ). Recent advances in our knowledge of dengue and sandfly fever. Am J Trop Med Hyg 4, 198–207.
    [Google Scholar]
  45. Sabin, A. B. & Schlesinger, R. W. ( 1945; ). Production of immunity to dengue with virus modified by propagation in mice. Science 101, 640–642.[CrossRef]
    [Google Scholar]
  46. Sa-Carvalho, D., Rieder, E., Baxt, B., Rodarte, R., Tanuri, A. & Mason, P. W. ( 1997; ). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71, 5115–5123.
    [Google Scholar]
  47. Saluzzo, J. F. ( 2003; ). Empirically derived live-attenuated vaccines against dengue and Japanese encephalitis. Adv Virus Res 61, 419–443.
    [Google Scholar]
  48. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory.
  49. Sasisekharan, R., Shriver, Z., Venkataraman, G. & Narayanasami, U. ( 2002; ). Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2, 521–528.[CrossRef]
    [Google Scholar]
  50. Schlesinger, R. W., Gordon, I., Frankel, J. W., Winter, W., Patterson, P. R. & Dorrance, W. R. ( 1956; ). Clinical and serologic response of man to immunization with attenuated dengue and yellow fever viruses. J Immunol 77, 352–364.
    [Google Scholar]
  51. Scott, R. M., Nisalak, A., Eckels, K. H., Tingpalapong, M., Harrison, V. R., Gould, D. J., Chapple, F. E. & Russell, P. K. ( 1980; ). Dengue-2 vaccine: viremia and immune responses in rhesus monkeys. Infect Immun 27, 181–186.
    [Google Scholar]
  52. Shresta, S., Kyle, J. L., Snider, H. M., Basavapatna, M., Beatty, P. R. & Harris, E. ( 2004; ). Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78, 2701–2710.[CrossRef]
    [Google Scholar]
  53. Spillmann, D. ( 2001; ). Heparan sulfate: anchor for viral intruders? Biochimie 83, 811–817.[CrossRef]
    [Google Scholar]
  54. Talarico, L. B., Pujol, C. A., Zibetti, R. G., Faria, P. C., Noseda, M. D., Duarte, M. E. & Damonte, E. B. ( 2005; ). The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res 66, 103–110.[CrossRef]
    [Google Scholar]
  55. Thullier, P., Demangel, C., Bedouelle, H., Megret, F., Jouan, A., Deubel, V., Mazie, J. C. & Lafaye, P. ( 2001; ). Mapping of a dengue virus neutralizing epitope critical for the infectivity of all serotypes: insight into the neutralization mechanism. J Gen Virol 82, 1885–1892.
    [Google Scholar]
  56. van den Broek, M. F., Muller, U., Huang, S., Aguet, M. & Zinkernagel, R. M. ( 1995; ). Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. J Virol 69, 4792–4796.
    [Google Scholar]
  57. Van Gennip, H. G., Vlot, A. C., Hulst, M. M., De Smit, A. J. & Moormann, R. J. ( 2004; ). Determinants of virulence of classical swine fever virus strain Brescia. J Virol 78, 8812–8823.[CrossRef]
    [Google Scholar]
  58. Zhang, W., Heil, M., Kuhn, R. J. & Baker, T. S. ( 2005; ). Heparin binding sites on Ross River virus revealed by electron cryo-microscopy. Virology 332, 511–518.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82164-0
Loading
/content/journal/jgv/10.1099/vir.0.82164-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error