1887

Abstract

A full-length cDNA of the genome of (BBSV), isolate Ningxia, was constructed and modified by site-directed mutagenesis to permit transcription of mutant viral RNAs. Two subgenomic (sg) RNAs (sgRNA1 and sgRNA2) appeared during BBSV replication. Mutagenesis revealed that sgRNA1 transcription was initiated at G within the P82 polymerase subunit open reading frame (ORF) and that transcription of sgRNA2 began at G within the nested p7b/p5′ ORF. Initiation-codon shifting or premature termination of translation of the three ORFs (P7a, P7b and P5′) encoded by sgRNA1 indicated that each of the genes was required for localized movement, accumulation of viral RNAs and formation of local lesions on the leaves of . Microscopic observations of the distribution of green fluorescent protein fused to the N-terminal portion of the capsid protein provided additional evidence that the P7a, P7b and P5′ proteins are each required for cell-to-cell movement. In contrast, elimination of sgRNA2 showed that the BBSV coat protein was not required for viral RNA accumulation or the appearance of local lesions on . In addition, disruption of the small P5 ORF previously predicted by computer analysis to originate at the C terminus of the P82 ORF had no effect on disease phenotype, suggesting that this ORF may represent a cryptic, non-essential gene. These results show that BBSV has a novel cell-to-cell movement protein organization that differs in size and sequence from that of other viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81928-0
2006-10-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/3077.html?itemId=/content/journal/jgv/10.1099/vir.0.81928-0&mimeType=html&fmt=ahah

References

  1. Argos P. 1988; A sequence motif in many polymerases. Nucleic Acids Res 16:9909–9916 [CrossRef]
    [Google Scholar]
  2. Barlow J. J., Mathias A. P., Williamson R., Gammack D. B. 1963; A simple method for quantitative isolation of undegraded high molecular weight ribonucleic acid. Biochem Biophys Res Commun 13:61–66 [CrossRef]
    [Google Scholar]
  3. Benson R. J., Porter-Jordan K., Buoniconti P., Fine R. E. 1985; Biochemical and cytochemical evidence indicates that coated vesicles in chick embryo myotubes contain newly synthesized acetylcholinesterase. J Cell Biol 101:1930–1940 [CrossRef]
    [Google Scholar]
  4. Bo Y.-X., Cai Z.-N., Ding Q., Yu J.-L., Liu Y. 1996; Characterization of beet black scorch virus RNA, partial cDNA cloning and sequencing of the small component. J Agric Biotechnol 4:269–276
    [Google Scholar]
  5. Boonham N., Henry C. M., Wood K. R. 1995; The nucleotide sequence and proposed genome organization of oat chlorotic stunt virus, a new soil-borne virus of cereals. J Gen Virol 76:2025–2034 [CrossRef]
    [Google Scholar]
  6. Cai Z.-N., Chen D.-H., Wu M.-S., Cui X.-M., Yu J.-L., Liu Y. 1993; Identification of pathogenic virus of beet black scorch disease and detection by synthesized cDNA probes. J Beijing Agric Univ 19:112
    [Google Scholar]
  7. Callaway A., Giesman-Cookmeyer D., Gillock E. T., Sit T. L., Lommel S. A. 2001; The multifunctional capsid proteins of plant RNA viruses. Annu Rev Phytopathol 39:419–460 [CrossRef]
    [Google Scholar]
  8. Cao Y.-H., Cai Z.-N., Ding Q., Li D.-W., Han C.-G., Yu J.-L., Liu Y. 2002; The complete nucleotide sequence of Beet black scorch virus (BBSV), a new member of the genus Necrovirus . Arch Virol 147:2431–2435 [CrossRef]
    [Google Scholar]
  9. Cardoso J. M. S., Félix M. R., Clara M. I. E., Oliveira S. 2005; The complete genome sequence of a new Necrovirus isolated from Olea europaea L. Arch Virol 150:815–823 [CrossRef]
    [Google Scholar]
  10. Castellano M. A., Loconsole G., Grieco F., Di Sansebastiano G. P., Martelli G. P. 2005; Subcellular localization and immunodetection of movement proteins of olive latent virus 1. Arch Virol 150:1369–1381 [CrossRef]
    [Google Scholar]
  11. Cohen Y., Gisel A., Zambryski P. C. 2000a; Cell-to-cell and systemic movement of recombinant green fluorescent protein-tagged turnip crinkle viruses. Virology 273:258–266 [CrossRef]
    [Google Scholar]
  12. Cohen Y., Qu F., Gisel A., Morris T. J., Zambryski P. C. 2000b; Nuclear localization of turnip crinkle virus movement protein p8. Virology 273:276–285 [CrossRef]
    [Google Scholar]
  13. Cormack B. P., Valdivia R. H., Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38 [CrossRef]
    [Google Scholar]
  14. Coutts R. H., Rigden J. E., Slabas A. R., Lomonossoff G. P., Wise P. J. 1991; The complete nucleotide sequence of tobacco necrosis virus strain D. J Gen Virol 72:1521–1529 [CrossRef]
    [Google Scholar]
  15. Cui X.-M., Gong Z.-X., Yu N.-J. 1988; Studies on two virus isolates from sugar beet in Xinjiang. J Shihezi Agric Coll 10:73–78
    [Google Scholar]
  16. Dodds J. A., Morris T. J., Jordan R. C. 1984; Plant viral double-stranded RNA. Annu Rev Phytopathol 22:151–168 [CrossRef]
    [Google Scholar]
  17. Drouzas A. D., Offei S. K., Coutts R. H. A. 1996; Subcellular location and expression of tobacco necrosis necrovirus p7a protein. J Phytopathol 144:297–299 [CrossRef]
    [Google Scholar]
  18. Fabian M. R., White K. A. 2004; 5′–3′ RNA–RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mRNA: a potential common mechanism for Tombusviridae. J Biol Chem 279:28862–28872 [CrossRef]
    [Google Scholar]
  19. Frohman M. A., Dush M. K., Martin G. R. 1988; Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85:8998–9002 [CrossRef]
    [Google Scholar]
  20. Geier G. E., Modrich P. 1979; Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J Biol Chem 254:1408–1413
    [Google Scholar]
  21. Grieco F., Savino V., Martelli G. P. 1996; Nucleotide sequence of the genome of a citrus isolate of olive latent virus 1. Arch Virol 141:825–838 [CrossRef]
    [Google Scholar]
  22. Guo L., Allen E. M., Miller W. A. 2001; Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol Cell 7:1103–1109 [CrossRef]
    [Google Scholar]
  23. Guo L.-H., Cao Y.-H., Li D.-W., Niu S.-N., Cai Z.-N., Han C.-G., Zhai Y.-F., Yu J.-L. 2005; Analysis of nucleotide sequences and multimeric forms of a novel satellite RNA associated with beet black scorch virus. J Virol 79:3664–3674 [CrossRef]
    [Google Scholar]
  24. Hacker D. L., Petty I. T. D., Wei N., Morris T. J. 1992; Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186:1–8 [CrossRef]
    [Google Scholar]
  25. Hearne P. Q., Knorr D. A., Hillman B. I., Morris T. J. 1990; The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virology 177:141–151 [CrossRef]
    [Google Scholar]
  26. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  27. Jiang J.-X., Zhang J.-F., Che S.-C., Yang D.-J., Yu J.-L., Cai Z.-N., Liu Y. 1999; Transmission of beet black scorch virus by Olpidium brassicae . J Jiangxi Agric Univ 21:525–528
    [Google Scholar]
  28. Lakatos L., Szittya G., Silhavy D., Burgyán J. 2004; Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23:876–884 [CrossRef]
    [Google Scholar]
  29. Li W.-Z., Qu F., Morris T. J. 1998; Cell-to-cell movement of turnip crinkle virus is controlled by two small open reading frames that function in trans . Virology 244:405–416 [CrossRef]
    [Google Scholar]
  30. Lin H.-X., White K. A. 2004; A complex network of RNA–RNA interactions controls subgenomic mRNA transcription in a tombusvirus. EMBO J 23:3365–3374 [CrossRef]
    [Google Scholar]
  31. Liu J.-X., Xian H.-Q. 1995; Preliminary report on Beet black scorch virus . China Sugarbeet 3:30–31
    [Google Scholar]
  32. Lommel S. A., Martelli G. P., Rubino L., Russo M. 2005; Tombusviridae . In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp  906–936 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  33. Lot H., Rubino L., Delecolle B., Jacquemond M., Turturo C., Russo M. 1996; Characterization, nucleotide sequence and genome organization of leek white stripe virus, a putative new species of the genus Necrovirus . Arch Virol 141:2375–2386 [CrossRef]
    [Google Scholar]
  34. Lu R., Folimonov A., Shintaku M., Li W.-X., Falk B. W., Dawson W. O., Ding S.-W. 2004; Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101:15742–15747 [CrossRef]
    [Google Scholar]
  35. Mérai Z., Kerényi Z., Molnár A., Barta E., Válóczi A., Bisztray G., Havelda Z., Burgyán J., Silhavy D. 2005; Aureusvirus P14 is an efficient RNA silencing suppressor that binds double-stranded RNAs without size specificity. J Virol 79:7217–7226 [CrossRef]
    [Google Scholar]
  36. Meulewaeter F., Seurinck J., van Emmelo J. 1990; Genomic structure of tobacco necrosis virus strain A. Virology 177:699–709 [CrossRef]
    [Google Scholar]
  37. Meulewaeter F., Cornelissen M., van Emmelo J. 1992; Subgenomic RNAs mediate expression of cistrons located internally on the genomic RNA of tobacco necrosis virus strain A. J Virol 66:6419–6428
    [Google Scholar]
  38. Meulewaeter F., van Lipzig R., Gultyaev A. P., Pleij C. W. A., van Damme D., Cornelissen M., van Eldik G. 2004; Conservation of RNA structures enables TNV and BYDV 5′ and 3′ elements to cooperate synergistically in cap-independent translation. Nucleic Acids Res 32:1721–1730 [CrossRef]
    [Google Scholar]
  39. Miller W. A., Koev G. 2000; Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology 273:1–8 [CrossRef]
    [Google Scholar]
  40. Molnár A., Havelda Z., Dalmay T., Szutorisz H., Burgyán J. 1997; Complete nucleotide sequence of tobacco necrosis virus strain DH and genes required for RNA replication and virus movement. J Gen Virol 78:1235–1239
    [Google Scholar]
  41. Morozov S. Y., Solovyev A. G. 2003; Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366 [CrossRef]
    [Google Scholar]
  42. Offei S. K., Coutts R. H. A. 1996; Location of the 5′ termini of tobacco necrosis virus strain D subgenomic mRNAs. J Phytopathol 144:13–17 [CrossRef]
    [Google Scholar]
  43. Offei S. K., Coffin R. S., Coutts R. H. 1995; The tobacco necrosis virus p7a protein is a nucleic acid-binding protein. J Gen Virol 76:1493–1496 [CrossRef]
    [Google Scholar]
  44. Percy M. E., Buchwald B. M. 1972; A manual method of sequential Edman degradation followed by dansylation for the determination of protein sequences. Anal Biochem 45:60–67 [CrossRef]
    [Google Scholar]
  45. Qu F., Ren T., Morris T. J. 2003; The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77:511–522 [CrossRef]
    [Google Scholar]
  46. Quillet L., Guilley H., Jonard G., Richards K. 1989; In vitro synthesis of biologically active beet necrotic yellow vein virus RNA. Virology 172:293–301 [CrossRef]
    [Google Scholar]
  47. Rubino L., Russo M. 1997; Molecular analysis of the pothos latent virus genome. J Gen Virol 78:1219–1226
    [Google Scholar]
  48. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  49. Scheets K. 2000; Maize chlorotic mottle machlomovirus expresses its coat protein from a 1.47-kb subgenomic RNA and makes a 0.34-kb subgenomic RNA. Virology 267:90–101 [CrossRef]
    [Google Scholar]
  50. Thomas C. L., Leh V., Lederer C., Maule A. J. 2003; Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana . Virology 306:33–41 [CrossRef]
    [Google Scholar]
  51. Turina M., Desvoyes B., Scholthof K.-B. G. 2000; A gene cluster encoded by Panicum mosaic virus is associated with virus movement. Virology 266:120–128 [CrossRef]
    [Google Scholar]
  52. Wu B., White K. A. 1999; A primary determinant of cap-independent translation is located in the 3′-proximal region of the tomato bushy stunt virus genome. J Virol 73:8982–8988
    [Google Scholar]
  53. Zhang K.-W., Wang S.-L., Cai Z.-N., Zhang H.-S. 1996; Preliminary study on beet black scorch disease in Ningxia Province. China Beet Sugar 2:3–8
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.81928-0
Loading
/content/journal/jgv/10.1099/vir.0.81928-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error