1887

Abstract

Although homologues of the open reading frame (ORF) UL4 of herpes simplex virus 1 () have been found in the genomes of all hitherto-analysed alphaherpesviruses, little is known about their function. In a project to analyse systematically, in an isogenic and standardized assay system, the gene products of the alphaherpesvirus pseudorabies virus (PrV; ), the PrV UL4 gene product was identified using a monospecific rabbit antiserum prepared against a bacterial fusion protein. Western blot and immunofluorescence analyses revealed that the 146 codon UL4 ORF of PrV was translated into a nuclear 15 kDa protein which was detectable from 6 h after infection of rabbit kidney cells, but was not found in purified virus particles. For functional analysis, a UL4-negative virus recombinant (PrV-ΔUL4F) was generated by mutagenesis of an infectious full-length clone of the PrV genome in . PrV-ΔUL4F was replication-competent in rabbit kidney cells, and plaque formation was not affected by the mutation. However, maximum virus titres of PrV-ΔUL4F were decreased about fivefold compared with wild-type PrV, and electron microscopy of infected cells demonstrated an impairment of release of mature virions. This growth defect of PrV-ΔUL4F could be corrected completely by propagation in UL4-expressing cells. Correlating with the inconspicuous phenotype, neurovirulence of PrV-ΔUL4F was also not affected significantly. Thus, UL4 encodes a non-structural protein of PrV that enhances virion formation but is not essential for PrV replication or .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81813-0
2006-09-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2517.html?itemId=/content/journal/jgv/10.1099/vir.0.81813-0&mimeType=html&fmt=ahah

References

  1. Babic, N., Klupp, B. G., Brack, A., Mettenleiter, T. C., Ugolini, G. & Flamand, A. ( 1996; ). Deletion of glycoprotein gE reduces the propagation of pseudorabies virus in the nervous system of mice after intranasal inoculation. Virology 219, 279–284.[CrossRef]
    [Google Scholar]
  2. Brideau, A. D., Eldridge, M. G. & Enquist, L. W. ( 2000; ). Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail. J Virol 74, 4549–4561.[CrossRef]
    [Google Scholar]
  3. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  4. Crute, J. J., Tsurumi, T., Zhu, L., Weller, S. K., Olivo, P. D., Challberg, M. D., Mocarski, E. S. & Lehman, I. R. ( 1989; ). Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proc Natl Acad Sci U S A 86, 2186–2189.[CrossRef]
    [Google Scholar]
  5. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  6. Davison, A. J. & Scott, J. E. ( 1986; ). The complete DNA sequence of varicella-zoster virus. J Gen Virol 67, 1759–1816.[CrossRef]
    [Google Scholar]
  7. Davison, A. J., Eberle, R., Hayward, G. S., McGeoch, D. J., Minson, A. C., Pellet, P. E., Roizman, B., Studdert, M. J. & Thiry, E. ( 2005; ). Family Herpesviridae. In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses, pp. 193–212. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego: Elsevier Academic Press.
  8. Dean, H. J. & Cheung, A. K. ( 1993; ). A 3′ coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, and UL3 gene homologs and a unique UL3.5 open reading frame. J Virol 67, 5955–5961.
    [Google Scholar]
  9. Dean, H. J. & Cheung, A. K. ( 1994; ). Identification of the pseudorabies virus UL4 and UL5 (helicase) genes. Virology 202, 962–967.[CrossRef]
    [Google Scholar]
  10. Dietz, P., Klupp, B. G., Fuchs, W., Köllner, B., Weiland, E. & Mettenleiter, T. C. ( 2000; ). Pseudorabies virus glycoprotein K requires the UL20 gene product for processing. J Virol 74, 5083–5090.[CrossRef]
    [Google Scholar]
  11. Eide, T., Marsden, H. S., Leib, D. A., Cunningham, C., Davison, A. J., Langeland, N. & Haarr, L. ( 1998; ). Identification of the UL4 protein of herpes simplex virus type 1. J Gen Virol 79, 3033–3038.
    [Google Scholar]
  12. Enquist, L. W. ( 2002; ). Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. J Infect Dis 186 (Suppl. 2), S209–S214.[CrossRef]
    [Google Scholar]
  13. Fuchs, W., Klupp, B. G., Granzow, H., Rziha, H. J. & Mettenleiter, T. C. ( 1996; ). Identification and characterization of the pseudorabies virus UL3.5 protein, which is involved in virus egress. J Virol 70, 3517–3527.
    [Google Scholar]
  14. Fuchs, W., Klupp, B. G., Granzow, H., Osterrieder, N. & Mettenleiter, T. C. ( 2002; ). The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76, 364–378.[CrossRef]
    [Google Scholar]
  15. Graham, F. L. & van der Eb, A. J. ( 1973; ). A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.[CrossRef]
    [Google Scholar]
  16. Jahedi, S., Markovitz, N. S., Filatov, F. & Roizman, B. ( 1999; ). Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J Virol 73, 5132–5138.
    [Google Scholar]
  17. Jun, P. Y., Strelow, L. I., Herman, R. C., Marsden, H. S., Eide, T., Haarr, L. & Leib, D. A. ( 1998; ). The UL4 gene of herpes simplex virus type 1 is dispensable for latency, reactivation and pathogenesis in mice. J Gen Virol 79, 1603–1611.
    [Google Scholar]
  18. Kaplan, A. S. & Vatter, A. ( 1959; ). A comparison of herpes simplex and pseudorabies virus. Virology 7, 394–407.[CrossRef]
    [Google Scholar]
  19. Klopfleisch, R., Teifke, J. P., Fuchs, W., Kopp, M., Klupp, B. G. & Mettenleiter, T. C. ( 2004; ). Influence of tegument proteins of pseudorabies virus on neuroinvasion and transneuronal spread in the nervous system of adult mice after intranasal inoculation. J Virol 78, 2956–2966.[CrossRef]
    [Google Scholar]
  20. Klopfleisch, R., Teifke, J. P., Fuchs, W., Kopp, M., Klupp, B. G. & Mettenleiter, T. C. ( 2006; ). Influence of pseudorabies virus proteins on neuroinvasion and neurovirulence in mice. J Virol 80, 5571–5576.[CrossRef]
    [Google Scholar]
  21. Klupp, B. G. & Mettenleiter, T. C. ( 1999; ). Glycoprotein gL-independent infectivity of pseudorabies virus is mediated by a gD-gH fusion protein. J Virol 73, 3014–3022.
    [Google Scholar]
  22. Klupp, B. G., Granzow, H. & Mettenleiter, T. C. ( 2000; ). Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol 74, 10063–10073.[CrossRef]
    [Google Scholar]
  23. Klupp, B. G., Hengartner, C. J., Mettenleiter, T. C. & Enquist, L. W. ( 2004; ). Complete, annotated sequence of the pseudorabies virus genome. J Virol 78, 424–440.[CrossRef]
    [Google Scholar]
  24. Kopp, M., Granzow, H., Fuchs, W., Klupp, B. G., Mundt, E., Karger, A. & Mettenleiter, T. C. ( 2003; ). The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm. J Virol 77, 5339–5351.[CrossRef]
    [Google Scholar]
  25. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 277, 680–685.
    [Google Scholar]
  26. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E. & Taylor, P. ( 1988; ). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69, 1531–1574.[CrossRef]
    [Google Scholar]
  27. Mettenleiter, T. C. ( 1989; ). Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. Virology 171, 623–625.[CrossRef]
    [Google Scholar]
  28. Mettenleiter, T. C. ( 2000; ). Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis – state of the art, June 1999. Vet Res 31, 99–115.
    [Google Scholar]
  29. Mettenleiter, T. C. ( 2003; ). Pathogenesis of neurotropic herpesviruses: role of viral glycoproteins in neuroinvasion and transneuronal spread. Virus Res 92, 197–206.[CrossRef]
    [Google Scholar]
  30. Mettenleiter, T. C. ( 2004; ). Budding events in herpesvirus morphogenesis. Virus Res 106, 167–180.[CrossRef]
    [Google Scholar]
  31. Roizman, B. & Pellet, P. E. ( 2001; ). The family Herpesviridae: a brief introduction. In Fields Virology, 4th edn, pp. 2381–2397. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  32. Telford, E. A. R., Watson, M. S., McBride, K. & Davison, A. J. ( 1992; ). The DNA sequence of equine herpesvirus-1. Virology 189, 304–316.[CrossRef]
    [Google Scholar]
  33. Tulman, E. R., Alfonso, C. L., Lu, Z., Zsak, L., Rock, D. L. & Kutish, G. F. ( 2000; ). The genome of a very virulent Marek's disease virus. J Virol 74, 7980–7988.[CrossRef]
    [Google Scholar]
  34. Yamada, H., Jiang, Y. M., Oshima, S., Wada, K., Goshima, F., Daikoku, T. & Nishiyama, Y. ( 1998; ). Characterization of the UL4 gene product of herpes simplex virus type 2. Arch Virol 143, 1199–1207.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81813-0
Loading
/content/journal/jgv/10.1099/vir.0.81813-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error