1887

Abstract

Sapovirus (SaV), a member of the family , is a causative agent of acute gastroenteritis in humans and swine and is currently divided into five genogroups, GI–GV. The proteolytic processing of the SaV open reading frame 1 (ORF1) polyprotein with a human GII SaV Mc10 strain has recently been determined and the products are arranged in the following order: NH–p11–p28–p35 (NTPase)–p32–p14 (VPg)–p70 (Pro–Pol)–p60 (VP1)–COOH. The cleavage site between p14 (VPg) and p70 (Pro–Pol) was identified as E/A by N-terminal amino acid sequencing. To identify other cleavage sites, a series of GII SaV Mc10 full-length clones containing disrupted potential cleavage sites in the ORF1 polyprotein were constructed and used to generate linear DNA templates for coupled transcription–translation. The translation products were analysed by SDS-PAGE or by immunoprecipitation with region-specific antibodies. N-terminal amino acid sequencing with -expressed recombinant proteins was also used to identify the cleavage site between p32 and p14. These approaches enabled identification of the six cleavage sites of the Mc10 ORF1 polyprotein as E/G, Q/G, Q/G, E/A, E/A and E/G. The alignment of the SaV full-length ORF1 amino acid sequences indicated that the dipeptides used for the cleavage sites were either E or Q at the P1 position and A, G or S at the P1′ position, which were conserved in the GI, GII, GIII, GIV and GV SaV ORF1 polyprotein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81799-0
2006-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3329.html?itemId=/content/journal/jgv/10.1099/vir.0.81799-0&mimeType=html&fmt=ahah

References

  1. Belliot, G., Sosnovtsev, S. V., Mitra, T., Hammer, C., Garfield, M. & Green, K. Y. ( 2003; ). In vitro proteolytic processing of the MD145 norovirus ORF1 nonstructural polyprotein yields stable precursors and products similar to those detected in calicivirus-infected cells. J Virol 77, 10957–10974.[CrossRef]
    [Google Scholar]
  2. Blakeney, S. J., Cahill, A. & Reilly, P. A. ( 2003; ). Processing of Norwalk virus nonstructural proteins by a 3C-like cysteine proteinase. Virology 308, 216–224.[CrossRef]
    [Google Scholar]
  3. Chang, K.-O., Sosnovtsev, S. V., Belliot, G., Kim, Y., Saif, L. J. & Green, K. Y. ( 2004; ). Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl Acad Sci U S A 101, 8733–8738.[CrossRef]
    [Google Scholar]
  4. Chen, R., Neill, J. D., Noel, J. S., Hutson, A. M., Glass, R. I., Estes, M. K. & Prasad, B. V. V. ( 2004; ). Inter- and intragenus structural variations in caliciviruses and their functional implications. J Virol 78, 6469–6479.[CrossRef]
    [Google Scholar]
  5. Clarke, I. N. & Lambden, P. R. ( 2000; ). Organization and expression of calicivirus genes. J Infect Dis 181 (Suppl. 2), S309–S316.[CrossRef]
    [Google Scholar]
  6. Farkas, T., Zhong, W. M., Jing, Y. & 7 other authors ( 2004; ). Genetic diversity among sapoviruses. Arch Virol 149, 1309–1323.
    [Google Scholar]
  7. Flynn, W. T. & Saif, L. J. ( 1988; ). Serial propagation of porcine enteric calicivirus-like virus in primary porcine kidney cell cultures. J Clin Microbiol 26, 206–212.
    [Google Scholar]
  8. Green, K. Y., Ando, T., Balayan, M. S. & 8 other authors ( 2000; ). Taxonomy of the caliciviruses. J Infect Dis 181 (Suppl. 2), S322–S330.[CrossRef]
    [Google Scholar]
  9. Guntapong, R., Hansman, G. S., Oka, T., Ogawa, S., Kageyama, T., Pongsuwanna, Y. & Katayama, K. ( 2004; ). Norovirus and sapovirus infections in Thailand. Jpn J Infect Dis 57, 276–278.
    [Google Scholar]
  10. Guo, M., Hayes, J., Cho, K. O., Parwani, A. V., Lucas, L. M. & Saif, L. J. ( 2001a; ). Comparative pathogenesis of tissue culture-adapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J Virol 75, 9239–9251.[CrossRef]
    [Google Scholar]
  11. Guo, M., Qian, Y., Chang, K.-O. & Saif, L. J. ( 2001b; ). Expression and self-assembly in baculovirus of porcine enteric calicivirus capsids into virus-like particles and their use in an enzyme-linked immunosorbent assay for antibody detection in swine. J Clin Microbiol 39, 1487–1493.[CrossRef]
    [Google Scholar]
  12. Hansman, G. S., Doan, L. T., Kguyen, T. A. & 9 other authors ( 2004a; ). Detection of norovirus and sapovirus infection among children with gastroenteritis in Ho Chi Minh City, Vietnam. Arch Virol 149, 1673–1688.
    [Google Scholar]
  13. Hansman, G. S., Katayama, K., Maneekarn, N. & 7 other authors ( 2004b; ). Genetic diversity of norovirus and sapovirus in hospitalized infants with sporadic cases of acute gastroenteritis in Chiang Mai, Thailand. J Clin Microbiol 42, 1305–1307.[CrossRef]
    [Google Scholar]
  14. Hansman, G. S., Katayama, K., Oka, T., Natori, K. & Takeda, N. ( 2005a; ). Mutational study of sapovirus expression in insect cells. Virol J 2, 13.[CrossRef]
    [Google Scholar]
  15. Hansman, G. S., Matsubara, N., Oka, T., Ogawa, S., Natori, K., Takeda, N. & Katayama, K. ( 2005b; ). Deletion analysis of the sapovirus VP1 gene for the assembly of virus-like particles. Arch Virol 150, 2529–2538.[CrossRef]
    [Google Scholar]
  16. Hansman, G. S., Natori, K., Oka, T., Ogawa, S., Tanaka, K., Nagata, N., Ushijima, H., Takeda, N. & Katayama, K. ( 2005c; ). Cross-reactivity among sapovirus recombinant capsid proteins. Arch Virol 150, 21–36.[CrossRef]
    [Google Scholar]
  17. Hansman, G. S., Takeda, N., Oka, T., Oseto, M., Hedlund, K. O. & Katayama, K. ( 2005d; ). Intergenogroup recombination in sapoviruses. Emerg Infect Dis 11, 1916–1920.
    [Google Scholar]
  18. Hansman, G. S., Takeda, N., Katayama, K., Tu, E. T., McIver, C. J., Rawlinson, W. D. & White, P. A. ( 2006; ). Genetic diversity of Sapovirus in children, Australia. Emerg Infect Dis 12, 141–143.[CrossRef]
    [Google Scholar]
  19. Hardy, M. E., Crone, T. J., Brower, J. E. & Ettayebi, K. ( 2002; ). Substrate specificity of the Norwalk virus 3C-like proteinase. Virus Res 89, 29–39.[CrossRef]
    [Google Scholar]
  20. Jiang, X., Zhong, W., Kaplan, M., Pickering, L. K. & Matson, D. O. ( 1999; ). Expression and characterization of Sapporo-like human calicivirus capsid proteins in baculovirus. J Virol Methods 78, 81–91.[CrossRef]
    [Google Scholar]
  21. Johansson, P. J. H., Bergentoft, K., Larsson, P. A., Magnusson, G., Widell, A., Thorhagen, M. & Hedlund, K.-O. ( 2005; ). A nosocomial sapovirus-associated outbreak of gastroenteritis in adults. Scand J Infect Dis 37, 200–204.[CrossRef]
    [Google Scholar]
  22. Katayama, K., Shirato-Horikoshi, H., Kojima, S. & 9 other authors ( 2002; ). Phylogenetic analysis of the complete genome of 18 Norwalk-like viruses. Virology 299, 225–239.[CrossRef]
    [Google Scholar]
  23. Katayama, K., Miyoshi, T., Uchino, K., Oka, T., Tanaka, T., Takeda, N. & Hansman, G. S. ( 2004; ). Novel recombinant sapovirus. Emerg Infect Dis 10, 1874–1876.[CrossRef]
    [Google Scholar]
  24. König, M., Thiel, H.-J. & Meyers, G. ( 1998; ). Detection of viral proteins after infection of cultured hepatocytes with rabbit hemorrhagic disease virus. J Virol 72, 4492–4497.
    [Google Scholar]
  25. Liu, B., Clarke, I. N. & Lambden, P. R. ( 1996; ). Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis. J Virol 70, 2605–2610.
    [Google Scholar]
  26. Liu, B. L., Viljoen, G. J., Clarke, I. N. & Lambden, P. R. ( 1999; ). Identification of further proteolytic cleavage sites in the Southampton calicivirus polyprotein by expression of the viral protease in E. coli. J Gen Virol 80, 291–296.
    [Google Scholar]
  27. Martin Alonso, J. M., Casais, R., Boga, J. A. & Parra, F. ( 1996; ). Processing of rabbit hemorrhagic disease virus polyprotein. J Virol 70, 1261–1265.
    [Google Scholar]
  28. Mayo, M. A. ( 2002; ). A summary of taxonomic changes recently approved by ICTV. Arch Virol 147, 1655–1663.[CrossRef]
    [Google Scholar]
  29. Meyers, G., Wirblich, C., Thiel, H.-J. & Thumfart, J. O. ( 2000; ). Rabbit hemorrhagic disease virus: genome organization and polyprotein processing of a calicivirus studied after transient expression of cDNA constructs. Virology 276, 349–363.[CrossRef]
    [Google Scholar]
  30. Nakata, S., Honma, S., Numata, K. K., Kogawa, K., Ukae, S., Morita, Y., Adachi, N. & Chiba, S. ( 2000; ). Members of the family Caliciviridae (Norwalk virus and Sapporo virus) are the most prevalent cause of gastroenteritis outbreaks among infants in Japan. J Infect Dis 181, 2029–2032.[CrossRef]
    [Google Scholar]
  31. Noel, J. S., Liu, B. L., Humphrey, C. D. & 7 other authors ( 1997; ). Parkville virus: a novel genetic variant of human calicivirus in the Sapporo virus clade, associated with an outbreak of gastroenteritis in adults. J Med Virol 52, 173–178.[CrossRef]
    [Google Scholar]
  32. Numata, K., Hardy, M. E., Nakata, S., Chiba, S. & Estes, M. K. ( 1997; ). Molecular characterization of morphologically typical human calicivirus Sapporo. Arch Virol 142, 1537–1552.[CrossRef]
    [Google Scholar]
  33. Oka, T., Katayama, K., Ogawa, S., Hansman, G. S., Kageyama, T., Miyamura, T. & Takeda, N. ( 2005a; ). Cleavage activity of the sapovirus 3C-like protease in Escherichia coli. Arch Virol 150, 2539–2548.[CrossRef]
    [Google Scholar]
  34. Oka, T., Katayama, K., Ogawa, S., Hansman, G. S., Kageyama, T., Ushijima, H., Miyamura, T. & Takeda, N. ( 2005b; ). Proteolytic processing of sapovirus ORF1 polyprotein. J Virol 79, 7283–7290.[CrossRef]
    [Google Scholar]
  35. Oka, T., Hansman, G. S., Katayama, K., Ogawa, S., Nagata, N., Miyamura, T. & Takeda, N. ( 2006; ). Expression of sapovirus virus-like particles in mammalian cells. Arch Virol 151, 399–404.[CrossRef]
    [Google Scholar]
  36. Parra, F., Boga, J. A., Marin, M. S. & Casais, R. ( 1993; ). The amino terminal sequence of VP60 from rabbit hemorrhagic disease virus supports its putative subgenomic origin. Virus Res 27, 219–228.[CrossRef]
    [Google Scholar]
  37. Paul, A. V., Molla, A. & Wimmer, E. ( 1994; ). Studies of a putative amphipathic helix in the N-terminus of poliovirus protein 2C. Virology 199, 188–199.[CrossRef]
    [Google Scholar]
  38. Robinson, S., Clarke, I. N., Vipond, I. B., Caul, E. O. & Lambden, P. R. ( 2002; ). Epidemiology of human Sapporo-like caliciviruses in the South West of England: molecular characterisation of a genetically distinct isolate. J Med Virol 67, 282–288.[CrossRef]
    [Google Scholar]
  39. Seah, E. L., Marshall, J. A. & Wright, P. J. ( 1999; ). Open reading frame 1 of the Norwalk-like virus Camberwell: completion of sequence and expression in mammalian cells. J Virol 73, 10531–10535.
    [Google Scholar]
  40. Seah, E. L., Marshall, J. A. & Wright, P. J. ( 2003; ). trans Activity of the norovirus Camberwell proteinase and cleavage of the N-terminal protein encoded by ORF1. J Virol 77, 7150–7155.[CrossRef]
    [Google Scholar]
  41. Sibilia, M., Boniotti, M. B., Angoscini, P., Capucci, L. & Rossi, C. ( 1995; ). Two independent pathways of expression lead to self-assembly of the rabbit hemorrhagic disease virus capsid protein. J Virol 69, 5812–5815.
    [Google Scholar]
  42. Someya, Y., Takeda, N. & Miyamura, T. ( 2000; ). Complete nucleotide sequence of the Chiba virus genome and functional expression of the 3C-like protease in Escherichia coli. Virology 278, 490–500.[CrossRef]
    [Google Scholar]
  43. Sosnovtsev, S. V., Sosnovtseva, S. A. & Green, K. Y. ( 1998; ). Cleavage of the feline calicivirus capsid precursor is mediated by a virus-encoded proteinase. J Virol 72, 3051–3059.
    [Google Scholar]
  44. Sosnovtsev, S. V., Garfield, M. & Green, K. Y. ( 2002; ). Processing map and essential cleavage sites of the nonstructural polyprotein encoded by ORF1 of the feline calicivirus genome. J Virol 76, 7060–7072.[CrossRef]
    [Google Scholar]
  45. Sosnovtseva, S. A., Sosnovtsev, S. V. & Green, K. Y. ( 1999; ). Mapping of the feline calicivirus proteinase responsible for autocatalytic processing of the nonstructural polyprotein and identification of a stable proteinase-polymerase precursor protein. J Virol 73, 6626–6633.
    [Google Scholar]
  46. Vinjé, J., Deijl, H., van der Heide, R., Lewis, D., Hedlund, K. O., Svensson, L. & Koopmans, M. P. ( 2000; ). Molecular detection and epidemiology of Sapporo-like viruses. J Clin Microbiol 38, 530–536.
    [Google Scholar]
  47. Wirblich, C., Sibilia, M., Boniotti, M. B., Rossi, C., Thiel, H. J. & Meyers, G. ( 1995; ). 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity. J Virol 69, 7159–7168.
    [Google Scholar]
  48. Wirblich, C., Thiel, H. J. & Meyers, G. ( 1996; ). Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J Virol 70, 7974–7983.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81799-0
Loading
/content/journal/jgv/10.1099/vir.0.81799-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error