-
Volume 87,
Issue 11,
2006
Volume 87, Issue 11, 2006
- Animal
-
- RNA viruses
-
-
Cap-dependent and hepatitis C virus internal ribosome entry site-mediated translation are modulated by phosphorylation of eIF2α under oxidative stress
Chronic hepatitis C is often associated with oxidative stress. Hepatitis C virus (HCV) utilizes an internal ribosome entry site (IRES) element for translation, in contrast to cap-dependent translation of the majority of cellular proteins. To understand how virus translation is modulated under oxidative stress, HCV IRES-mediated translation was compared with cap-dependent translation using a bicistronic reporter construct and hydrogen peroxide (H2O2) as a stress inducer. In H2O2-sensitive HeLa cells, H2O2 repressed translation in a time- and dose-dependent manner, concomitant with the kinetics of eIF2α phosphorylation. A phosphomimetic of eIF2α, which mimics the structure of the phosphorylated eIF2α, was sufficient to repress translation in the absence of H2O2. In H2O2-resistant HepG2 cells, H2O2 activated both HCV IRES-mediated and cap-dependent translation, associated with an increased level of phospho-eIF2α. It was postulated that H2O2 might stimulate translation in HepG2 cells via an eIF2α-independent mechanism, whereas the simultaneous phosphorylation of eIF2α repressed part of the translational activities. Indeed, the translational repression was released in the presence of a non-phosphorylatable mutant, eIF2α-SA, resulting in further enhancement of both translational activities after exposure to H2O2. In HuH7 cells, which exhibited an intermediate level of sensitivity towards H2O2, both HCV IRES-mediated and cap-dependent translational activities were upregulated after treatment with various doses of H2O2, but the highest level of induction was achieved with a low level of H2O2, which may represent the physiological level of H2O2. At this level, the HCV IRES-mediated translation was preferentially upregulated compared with cap-dependent translation.
-
-
-
Dual topology of the processed hepatitis C virus protein NS4B is influenced by the NS5A protein
More LessAmong the least-known hepatitis C virus proteins is the non-structural protein 4B (NS4B). It localizes to the endoplasmic reticulum (ER) membrane and induces membrane changes, resulting in a membranous web that is reported to be the locale for virus replication. A model was presented previously for the topology of recombinant HCV NS4B of the 1a genotype based on in vitro data. In this model, the N-terminal tail of a considerable fraction of the NS4B molecules was translocated into the ER lumen via a post-translational process, giving the protein a dual transmembrane topology. It is now reported that translocation of the N terminus also occurs for processed NS4B expressed in cells in the context of the polyprotein. In the presence of NS5A, however, a lower degree of translocation was observed, which may indicate that NS5A influences the topology of NS4B. In vitro expression studies of NS4B from all major genotypes demonstrated that translocation of the N terminus to the ER lumen is conserved across genotypes. This clearly suggests an important function for this feature. Furthermore, when disrupting a previously reported amphipathic helix (AH) in the N terminus of NS4B, translocation was inhibited. As a disrupted AH also abolished the ability of NS4B to rearrange membranes, these data indicate for the first time an association between translocation of the N terminus and membrane rearrangement. Finally, the present experiments also confirm the predicted location of the first luminal loop to be around aa 112.
-
-
-
Ngoye virus: a novel evolutionary lineage within the genus Flavivirus
By using degenerate primers deduced from conserved patterns in the flavivirus polymerase gene, a novel RNA virus was discovered in Rhipicephalus ticks sampled from members of the family Bovidae in Senegal. It was named Ngoye virus (NGOV) after the location from which it was isolated. Viral particles could be observed by electron microscopy, but isolation in vertebrate or invertebrate cell lines or by intracerebral infection of newborn mice remained unsuccessful. This is atypical of recognized arboviruses. The characterization of 4176 nt of the non-structural genes revealed that NGOV is a novel flavivirus species. It forms a distinct phylogenetic lineage related distantly to previously identified members of the genus Flavivirus. Analysis of genetic data suggested that the processing of the NGOV polyprotein and the organization of its replication complex are similar to those of flaviviruses. Together with other recent data, these findings suggest that a large number of viruses related distantly to ‘classical’ arthropod-borne flaviviruses remain to be discovered.
-
-
-
Mutagenesis analysis of the NS2B determinants of the Alkhurma virus NS2B–NS3 protease activation
Alkhurma virus (ALKV) is a tick-borne class 4 flavivirus responsible for several human cases of haemorrhagic fever in Saudi Arabia, with no specific treatment currently available. The viral RNA encodes a serine protease (NS2B–NS3), essential for virus replication in infected cells, that constitutes an attractive target for antiviral compounds. In an attempt to identify residues and motifs on NS2B that are necessary for protease activity of the ALKV NS2B–NS3 complex, a series of modified NS2B–NS3 proteins was constructed, with point mutations on particular residues or with the NS2B domain derived from two different viruses. Four mutants and the two chimeric proteins exhibited reduction of protease activity against BAPNA (a p-nitroanilide substrate). The results demonstrate that tight complementarity of the protein sequences is necessary for NS2B-dependent activation of NS3. The results also determine residues in the ALKV NS2B cofactor essential for protease activation, giving new insights into protease function in flaviviruses.
-
-
-
Identification of Japanese encephalitis virus-inducible genes in mouse brain and characterization of GARG39/IFIT2 as a microtubule-associated protein
More LessSeveral mouse central nervous system genes have been identified that are differentially regulated during Japanese encephalitis virus (JEV) infection, including those which have not been reported to be induced by any other neurotropic virus. Interestingly, 80 % of JEV-inducible genes identified in this study are also induced by Sindbis virus, indicating activation of common host signalling pathways by these two viruses, despite their diverse life cycles. One of these, the glucocorticoid attenuated response gene 39 (GARG39, also known as IFIT2, ISG54 and MuP54) was characterized further. It was demonstrated that GARG39 protein interacts with microtubules in vitro, co-localizes with β-tubulin in vivo and is enriched in the mitotic spindle of non-neuronal cells undergoing mitosis. While GARG39 was known for a long time as an inflammation-inducible glucocorticoid attenuated protein, its identification as a microtubule-associated protein in this study suggests a possible role for this protein in cell proliferation, virion assembly/transport and microtubule dynamics.
-
-
-
Secondary structure of dengue virus type 4 3′ untranslated region: impact of deletion and substitution mutations
More LessSeveral studies have generated computer-based predictions of secondary structure of the 3′ untranslated region (UTR) of Dengue virus (DEN); however, experimental verification of the formation of these structures in vitro is lacking. This study assessed the congruence of Mfold predictions of secondary structure of the core region of the DEN type 4 3′ UTR with nuclease maps of this region. Maps and predictions were largely consistent. Maps supported the existence of previously predicted pseudoknots and identified putative regions of dynamic folding. Additionally, this study investigated previously identified conserved elements in the flavivirus 3′ UTR that differ among viruses with different modes of transmission. Specific regions of mosquito-borne DEN type 4 were either deleted or replaced with homologous sequences from tick-borne Langat virus. All of these mutations caused substantial distortion of secondary structure, yet viruses carrying these mutations were viable.
-
-
-
Direct repeats in the 3′ untranslated regions of mosquito-borne flaviviruses: possible implications for virus transmission
More LessDirect repeats (DRs) of 20–45 nucleotide conserved sequences (CS) and repeated CS (RCS), separated by non-conserved sequences up to 100 nucleotides long, were previously described in the 3′ untranslated region (3′UTR) of the three major mosquito-borne flavivirus (MBFV) subgroups, represented by Japanese encephalitis virus, Yellow fever virus and Dengue virus. Each subgroup exhibits a specific pattern of DRs, the biological significance of which has not yet been adequately addressed. The DRs were originally identified using conventional alignment programs based on the assumption that genetic variation is driven primarily by nucleotide substitutions. Since there are no recognized alignment programs that can adequately accommodate very divergent sequences, a method has been devised to construct and analyse a substantially improved 3′UTR alignment between these highly divergent viruses, based on the concept that deletions and/or insertions, in addition to substitutions, are important drivers of 3′UTR evolution. This ‘robust alignment’ approach demonstrated more extensive homologies in the 3′UTR than had been recognized previously and revealed the presence of similar DRs, either intact or as sequence ‘remnants’, in all the MBFV subgroups. The relevance of these observations is discussed in relation to (i) the function of DRs as elements of replication enhancement, (ii) the evolution of RNA secondary structures and (iii) the significance of DRs and secondary structures in MBFV transmissibility between vertebrate and invertebrate hosts.
-
-
-
Molecular analysis of duck hepatitis virus type 1 reveals a novel lineage close to the genus Parechovirus in the family Picornaviridae
Duck hepatitis virus type 1 (DHV-1) was previously classified as an enterovirus, based primarily on observed morphology and physicochemical properties of the virion. The complete nucleotide sequences of two strains (DRL-62 and R85952) of DHV-1 have been determined. Excluding the poly(A) tail, the genomes are 7691 and 7690 nt, respectively, and contain a single, large open reading frame encoding a polyprotein of 2249 aa. The genome of DHV-1 is organized as are those of members of the family Picornaviridae: 5′ untranslated region (UTR)–VP0–VP3–VP1–2A1–2A2–2B–2C–3A–3B–3C–3D–3′ UTR. Analysis of the genomic and predicted polyprotein sequences revealed several unusual features, including the absence of a predicted maturation cleavage of VP0, the presence of two unrelated 2A protein motifs and a 3′ UTR extended markedly compared with that of any other picornavirus. The 2A1 protein motif is related to the 2A protein type of the genus Aphthovirus and the adjacent 2A2 protein is related to the 2A protein type present in the genus Parechovirus. Phylogenetic analysis using the 3D protein sequence shows that the two DHV-1 strains are related more closely to members of the genus Parechovirus than to other picornaviruses. However, the two DHV-1 strains form a monophyletic group, clearly distinct from members of the genus Parechovirus.
-
-
-
Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon
More LessPoliovirus (PV) infection causes severe paralysis, typically of the legs, by destruction of the motor neurons in the spinal cord. In this study, the relationship between PV replication in the spinal cord, damage in the motor neurons and poliomyelitis-like paralysis was analysed in transgenic mice expressing the human PV receptor (TgPVR21). First, a PV replicon encoding firefly luciferase in place of the capsid genes (PV-Fluc mc) was trans-encapsidated in 293T cells and the trans-encapsidated PV-Fluc mc (TE-PV-Fluc mc) was then inoculated into the spinal cords of TgPVR21 mice. TE-PV-Fluc mc was recovered with a titre of 6.3×107 infectious units ml−1, which was comparable to those of PV1 strains. TgPVR21 mice inoculated with TE-PV-Fluc mc showed non-lethal paralysis of the hindlimbs, with severity ranging from a decline in grip strength to complete flaccid paralysis. The replication of TE-PV-Fluc mc in the spinal cord reached peak levels at 10 h post-inoculation (p.i.), followed by the appearance of paralysis at as early as 12 h p.i., reaching a plateau at 16 h p.i. Histological analysis showed a correlation between the lesion and the severity of the clinical symptoms in most mice. However, severe paralysis could also be observed with an apparently low lesion score, where as few as 5.3×102 motor neurons (1.4 % of the susceptible cells in the lumbar cord) were infected by TE-PV-Fluc mc. These results indicate that PV replication in a small population of the motor neurons was critical for severe residual poliomyelitis-like paralysis in TgPVR21 mice.
-
-
-
Identification of the cleavage sites of sapovirus open reading frame 1 polyprotein
Sapovirus (SaV), a member of the family Caliciviridae, is a causative agent of acute gastroenteritis in humans and swine and is currently divided into five genogroups, GI–GV. The proteolytic processing of the SaV open reading frame 1 (ORF1) polyprotein with a human GII SaV Mc10 strain has recently been determined and the products are arranged in the following order: NH2–p11–p28–p35 (NTPase)–p32–p14 (VPg)–p70 (Pro–Pol)–p60 (VP1)–COOH. The cleavage site between p14 (VPg) and p70 (Pro–Pol) was identified as E1055/A1056 by N-terminal amino acid sequencing. To identify other cleavage sites, a series of GII SaV Mc10 full-length clones containing disrupted potential cleavage sites in the ORF1 polyprotein were constructed and used to generate linear DNA templates for in vitro coupled transcription–translation. The translation products were analysed by SDS-PAGE or by immunoprecipitation with region-specific antibodies. N-terminal amino acid sequencing with Escherichia coli-expressed recombinant proteins was also used to identify the cleavage site between p32 and p14. These approaches enabled identification of the six cleavage sites of the Mc10 ORF1 polyprotein as E69/G70, Q325/G326, Q666/G667, E940/A941, E1055/A1056 and E1722/G1723. The alignment of the SaV full-length ORF1 amino acid sequences indicated that the dipeptides used for the cleavage sites were either E or Q at the P1 position and A, G or S at the P1′ position, which were conserved in the GI, GII, GIII, GIV and GV SaV ORF1 polyprotein.
-
-
-
Feline calicivirus replication: requirement for polypyrimidine tract-binding protein is temperature-dependent
More LessThe interaction of host-cell nucleic acid-binding proteins with the genomes of positive-stranded RNA viruses is known to play a role in the translation and replication of many viruses. To date, however, the characterization of similar interactions with the genomes of members of the family Caliciviridae has been limited to in vitro binding analysis. In this study, Feline calicivirus (FCV) has been used as a model system to identify and characterize the role of host-cell factors that interact with the viral RNA. It was demonstrated that polypyrimidine tract-binding protein (PTB) interacts specifically with the 5′ sequences of the FCV genomic and subgenomic RNAs. Using RNA interference it was shown that PTB is required for efficient FCV replication in a temperature-dependent manner. siRNA-mediated knockdown of PTB resulted in a 15- to 100-fold reduction in virus titre, as well as a concomitant reduction in viral RNA and protein synthesis at 32 °C. In addition, virus-induced cytopathic effect was significantly delayed as a result of an siRNA-mediated reduction in PTB levels. A role for PTB in the calicivirus life cycle was more apparent at temperatures above and below 37 °C, fitting with the hypothesis that PTB functions as an RNA chaperone, potentially aiding the folding of RNA into functional structures. This is the first functional demonstration of a host-cell protein interacting with a calicivirus RNA.
-
-
-
Inter- and intra-variant genetic heterogeneity of human coronavirus OC43 strains in France
Human coronavirus OC43 (HCoV-OC43) causes acute, self-limited respiratory infections. A close relationship between bovine coronaviruses (BCoVs) and HCoV-OC43 has recently been demonstrated. This study includes seven clinical, non-cell culture-adapted, contemporary HCoV-OC43 strains detected in France in 2003. By using RT-PCR and clonal sequencing of the S1 gene of HCoV-OC43, the inter-variant heterogeneity of the HCoV-OC43 circulating strains was studied and the intra-variant diversity was assessed by investigation of a quasispecies cloud. This paper brings to the forefront a high genetic diversity of circulating HCoV-OC43 variants. Genetically different groups are defined among the variants described in this study. One of these variants holds characteristics of an outlier and presents a deletion of 12 nt, also found in BCoV strains. Moreover, the presence of HCoV-OC43 as a quasispecies cloud in vivo during an acute respiratory-tract illness was discovered. It has also been revealed that quasispecies-cloud sizes are similar for the two viral populations tested.
-
-
-
Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis
Bats were recently identified as natural reservoirs of SARS-like coronavirus (SL-CoV) or SARS coronavirus-like virus. These viruses, together with SARS coronaviruses (SARS-CoV) isolated from human and palm civet, form a distinctive cluster within the group 2 coronaviruses of the genus Coronavirus, tentatively named group 2b (G2b). In this study, complete genome sequences of two additional group 2b coronaviruses (G2b-CoVs) were determined from horseshoe bat Rhinolophus ferrumequinum (G2b-CoV Rf1) and Rhinolophus macrotis (G2b-CoV Rm1). The bat G2b-CoV isolates have an identical genome organization and share an overall genome sequence identity of 88–92 % among themselves and between them and the human/civet isolates. The most variable regions are located in the genes encoding nsp3, ORF3a, spike protein and ORF8 when bat and human/civet G2b-CoV isolates are compared. Genetic analysis demonstrated that a diverse G2b-CoV population exists in the bat habitat and has evolved from a common ancestor of SARS-CoV.
-
-
-
Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice
More LessNOS2 gene-deficient (NOS2−/−) mice are less susceptible than wild-type (NOS2+/+) mice to infection with Influenza A virus. Virus titres in the lungs of influenza-infected NOS2−/− mice are significantly lower than those in NOS2+/+ mice, with enhanced viral clearance in NOS2−/− mice dependent on gamma interferon (IFN-γ). The current study was undertaken to ascertain the role of specific components of the immune response in promoting virus clearance in influenza-infected NOS2−/− mice. Levels of T cell- and natural killer cell-mediated cytotoxicity in the lungs of virus-infected mice were not significantly different between NOS2+/+ and NOS2−/− mice. However, virus-infected NOS2−/− mice produced higher levels of virus-specific IgG2a antibody. Furthermore, more viable B cells and plasmablasts, along with greater levels of IFN-γ, were found in NOS2−/− splenocyte cultures stimulated with B-cell mitogens. In addition to the early reduction in virus titres, clinical symptoms and proinflammatory cytokine production were attenuated in NOS2−/− mice. Thus, NOS2−/− B cells are capable of responding rapidly to influenza virus infection by proliferating and preferentially producing antibody of the IgG2a subtype. The relationship between viral load and the development of immunopathology is discussed.
-
-
-
Role of the influenza virus heterotrimeric RNA polymerase complex in the initiation of replication
More LessBoth transcription and replication of the influenza virus RNA genome are catalysed by a virus-specific RNA polymerase. Recently, an in vitro assay, based on the synthesis of pppApG, for the initiation of replication by recombinant RNA polymerase in the absence of added primer was described. Here, these findings are extended to show that adenosine, AMP and ADP can each substitute for ATP in reactions catalysed by either recombinant ribonucleoprotein or RNA polymerase complexes with either model virion RNA (vRNA) or cRNA promoters. The use of either adenosine or AMP, rather than ATP, provides a convenient, sensitive and easy assay of replication initiation. Moreover, no pppApG was detected when a PB1–PA dimer, rather than the trimeric polymerase, was used to catalyse synthesis, contrasting with a previous report using baculovirus-expressed influenza RNA polymerase. Overall, it is suggested that the heterotrimeric polymerase is essential for the initiation of replication.
-
-
-
Matrix protein of Vesicular stomatitis virus harbours a cryptic mitochondrial-targeting motif
More LessVesicular stomatitis virus (VSV) is a rhabdovirus that has attracted attention of late as an oncolytic virus and as a vaccine vector. Mutations in the matrix (M) gene of VSV yield attenuated strains that may be very useful in both settings. As a result of this interest in the M protein, this study analysed various M–green fluorescent protein (GFP) fusion constructs. Remarkably, fusion of the N terminus of the M protein to GFP targeted the fluorescent protein to the surface of mitochondria. Mutational analysis indicated that a mitochondrial-targeting motif exists within aa 33–67. Expression of these fusion proteins led to loss of mitochondrial membrane permeability and to an alteration in mitochondrial organization mirroring that seen during viral infection. In addition, a portion of the M protein present in infected cells co-purified with mitochondria. This work may indicate a novel function for this multifunctional viral protein.
-
-
-
Identification of a cytotoxic T-lymphocyte (CTL) epitope recognized by Gag-specific CTLs in cynomolgus monkeys infected with simian/human immunodeficiency virus
Infection of Macaca fascicularis (cynomolgus monkey) with chimeric simian/human immunodeficiency virus (SHIV) provides a valuable experimental animal model of AIDS and is widely used for the development of human immunodeficiency virus vaccine strategies. In these settings, analysis of CD8+ T-cell responses during infection represents one of the key parameters for monitoring the evaluation of containment of virus replication. The generation of Gag-specific CD8+ T cells was reported previously from a cynomolgus monkey infected with SHIV89.6P by taking advantage of a B-lymphoblastoid cell line transduced with a retroviral vector expressing simian immunodeficiency virus (SIV) Gag. Here, it was shown that these cytotoxic T lymphocytes (CTLs) demonstrated specificity for a single 9 aa peptide (NCVGDHQAA) spanning aa 192–200 of the SIVmac239 p55gag protein. Furthermore, a positive response was found against the same epitope in one of six other SHIV-infected monkeys. This newly identified SIV Gag CTL epitope in SHIV-infected cynomolgus monkeys will be a useful tool for monitoring and evaluating Gag-specific immune responses during vaccination and infection in the cynomolgus monkey model of AIDS.
-
-
-
Identification of an HLA-A*0201-restricted cytotoxic T-lymphocyte epitope in rotavirus VP6 protein
More LessThe function of cytotoxic T lymphocytes (CTLs) in rotavirus (RV) infection in humans is poorly understood. To date, no RV-specific human leukocyte antigen (HLA) class I-restricted T-cell epitopes have been described. In this study, four peptides derived from human RV Wa strain VP6 protein were predicted by computer algorithms and verified by an HLA*0201-binding assay. Two peptides with high affinity for HLA-A*0201 molecules were further assessed. The CTLs induced in vitro by P340–348 (TLLANVTAV)-loaded autologous dendritic cells from peripheral blood lymphocytes of HLA-A*0201-matched healthy donors released gamma interferon specifically upon stimulation with P340–348-loaded T2 cells. The CTLs lysed both P340–348-loaded T2 cells and human RV Wa strain-infected HLA-A*0201+ Caco-2 cells in an antigen-specific and HLA-A*0201-restricted manner. At the same time, P340–348 was shown to be immunogenic in vivo in HLA-A*0201/Kb transgenic mice. It is proposed that P340–348 is an HLA-A*0201-restricted CTL epitope.
-
-
-
The 5′ non-translated region of Varroa destructor virus 1 (genus Iflavirus): structure prediction and IRES activity in Lymantria dispar cells
More LessStructure prediction of the 5′ non-translated region (NTR) of four iflavirus RNAs revealed two types of potential internal ribosome entry site (IRES), which are discriminated by size and level of complexity, in this group of viruses. In contrast to the intergenic IRES of dicistroviruses, the potential 5′ IRES structures of iflaviruses do not have pseudoknots. To test the activity of one of these, a bicistronic construct was made in which the 5′ NTR of Varroa destructor virus 1 (VDV-1) containing a putative IRES was cloned in between two reporter genes, enhanced green fluorescent protein and firefly luciferase (Fluc). The presence of the 5′ NTR of VDV-1 greatly enhanced the expression levels of the second reporter gene (Fluc) in Lymantria dispar Ld652Y cells. The 5′ NTR was active in a host-specific manner, as it showed lower activity in Spodoptera frugiperda Sf21 cells and no activity in Drosophila melanogaster S2 cells.
-
- DNA viruses
-
-
Adenovirus type 5 fiber knob domain has a critical role in fiber protein synthesis and encapsidation
Adenovirus serotype 5 (Ad5) vectors carrying knobless fibers designed to remove their natural tropism were found to have a lower fiber content than recombinant Ad5 with wild-type (WT) capsid, implying a role for the knob-coding sequence or/and the knob domain in fiber encapsidation. Experimental data using a variety of fiber gene constructs showed that the defect did not occur at the fiber mRNA level, but at the protein level. Knobless fiber proteins were found to be synthesized at a significant slower rate compared with knob-carrying fibers, and the trimerization process of knobless fibers paralleled their slow rate of synthesis. A recombinant Ad5 diploid for the fiber gene (referred to as Ad5/R7-ZZwt/E1 : WT-fiber) was constructed to analyse the possible rescue of the knobless low-fiber-content phenotype by co-expression of WT fiber. Ad5/R7-ZZwt/E1 : WT-fiber contained a knobless fiber gene in its natural location (L5) in the viral genome and an additional WT fiber gene in an ectopic position in E1. Knobless fiber was still synthesized at low levels compared with the co-expressed E1 : WT fiber and the recovery of the two fiber species in virus progeny reflected their respective amounts in the infected cells. Our results suggested that deletion of the fiber knob domain had a negative effect on the translation of the fiber mRNA and on the intracellular concentration of fiber protein. They also suggested that the knob control of fiber protein synthesis and encapsidation occurred as a cis effect, which was not modified by WT fiber protein provided in trans by the same Ad5 genome.
-
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
