1887

Abstract

The immediate-early protein, bICP0, of (BHV-1) transactivates viral promoters and stimulates productive infection. bICP0 is expressed constitutively during productive infection, as its gene contains an immediate-early and an early promoter. Like other ICP0 homologues encoded by members of the subfamily , bICP0 contains a zinc RING finger located near its N terminus. Mutations that disrupt the bICP0 zinc RING finger impair its ability to activate transcription, stimulate productive infection, inhibit interferon-dependent transcription in certain cell types and regulate subnuclear localization. bICP0 also interacts with a cellular chromatin-remodelling enzyme, histone deacetylase 1 (HDAC1), and can relieve HDAC1-mediated transcriptional repression, suggesting that bICP0 inhibits silencing of the viral genome. In this study, it was shown that bICP0 interacted with the histone acetyltransferase p300 during productive infection and in transiently transfected cells. In addition, p300 enhanced BHV-1 productive infection and transactivated a late viral promoter (gC). In contrast, a CH3-domain deletion mutant of p300, which is a dominant-negative mutant, did not activate the gC promoter. bICP0 and p300 cooperated to activate the gC promoter, suggesting that there is a synergistic effect on promoter activation. As p300 can activate certain antiviral signalling pathways (for example, interferon), it was hypothesized that interactions between p300 and bICP0 may dampen the antiviral response following infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81766-0
2006-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/1843.html?itemId=/content/journal/jgv/10.1099/vir.0.81766-0&mimeType=html&fmt=ahah

References

  1. Avantaggiati, M. L., Carbone, M., Graessmann, A., Nakatani, Y., Howard, B. & Levine, A. S. ( 1996; ). The SV40 large T antigen and adenovirus E1A oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J 15, 2236–2248.
    [Google Scholar]
  2. Boutell, C., Sadis, S. & Everett, R. D. ( 2002; ). Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76, 841–850.[CrossRef]
    [Google Scholar]
  3. Chakravarti, D., Ogryzko, V., Kao, H.-Y., Nash, A., Chen, H., Nakatani, Y. & Evans, R. M. ( 1999; ). A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96, 393–403.[CrossRef]
    [Google Scholar]
  4. Chan, H. M. & La Thangue, N. B. ( 2001; ). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114, 2363–2373.
    [Google Scholar]
  5. Deshmane, S. L. & Fraser, N. W. ( 1989; ). During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol 63, 943–947.
    [Google Scholar]
  6. Devireddy, L. R. & Jones, C. J. ( 1999; ). Activation of caspases and p53 by bovine herpesvirus 1 infection results in programmed cell death and efficient virus release. J Virol 73, 3778–3788.
    [Google Scholar]
  7. Devireddy, L., Zhang, Y. & Jones, C. J. ( 2003; ). Cloning and initial characterization of an alternatively spliced transcript encoded by the bovine herpes virus 1 latency-related gene. J Neurovirol 9, 612–622.[CrossRef]
    [Google Scholar]
  8. Eckner, R., Ewen, M. E., Newsome, D., Gerdes, M., DeCaprio, J. A., Lawrence, J. B. & Livingston, D. M. ( 1994; ). Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8, 869–884.[CrossRef]
    [Google Scholar]
  9. Everett, R. D. ( 1987; ). A detailed mutational analysis of Vmw110, a trans-acting transcriptional activator encoded by herpes simplex virus type 1. EMBO J 6, 2069–2076.
    [Google Scholar]
  10. Everett, R. D. ( 1988; ). Analysis of the functional domains of herpes simplex virus type 1 immediate-early polypeptide Vmw110. J Mol Biol 202, 87–96.[CrossRef]
    [Google Scholar]
  11. Everett, R. D. ( 2000; ). ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22, 761–770.[CrossRef]
    [Google Scholar]
  12. Everett, R. D., Barlow, P., Milner, A., Luisi, B., Orr, A., Hope, G. & Lyon, D. ( 1993; ). A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family. J Mol Biol 234, 1038–1047.[CrossRef]
    [Google Scholar]
  13. Everett, R. D., Meredith, M., Orr, A., Cross, A., Kathoria, M. & Parkinson, J. ( 1997; ). A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16, 1519–1530.[CrossRef]
    [Google Scholar]
  14. Everett, R. D., Earnshaw, W. C., Findlay, J. & Lomonte, P. ( 1999a; ). Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO J 18, 1526–1538.[CrossRef]
    [Google Scholar]
  15. Everett, R. D., Lomonte, P., Sternsdorf, T., van Driel, R. & Orr, A. ( 1999b; ). Cell cycle regulation of PML modification and ND10 composition. J Cell Sci 112, 4581–4588.
    [Google Scholar]
  16. Fraefel, C., Wirth, U. V., Vogt, B. & Schwyzer, M. ( 1993; ). Immediate-early transcription over covalently joined genome ends of bovine herpesvirus 1: the circ gene. J Virol 67, 1328–1333.
    [Google Scholar]
  17. Fraefel, C., Zeng, J., Choffat, Y., Engels, M., Schwyzer, M. & Ackermann, M. ( 1994; ). Identification and zinc dependence of the bovine herpesvirus 1 transactivator protein BICP0. J Virol 68, 3154–3162.
    [Google Scholar]
  18. Geiser, V. & Jones, C. ( 2003; ). Stimulation of bovine herpesvirus-1 productive infection by the adenovirus E1A gene and a cell cycle regulatory gene, E2F-4. J Gen Virol 84, 929–938.[CrossRef]
    [Google Scholar]
  19. Geiser, V., Inman, M., Zhang, Y. & Jones, C. ( 2002; ). The latency-related gene of bovine herpesvirus-1 can inhibit the ability of bICP0 to activate productive infection. J Gen Virol 83, 2965–2971.
    [Google Scholar]
  20. Geiser, V., Zhang, Y. & Jones, C. ( 2005; ). Characterization of a bovine herpesvirus 1 recombinant virus that does not express the bICP0 protein. J Gen Virol 86, 1987–1996.[CrossRef]
    [Google Scholar]
  21. Grunstein, M. ( 1997; ). Histone acetylation in chromatin structure and transcription. Nature 389, 349–352.[CrossRef]
    [Google Scholar]
  22. Gu, W. & Roeder, R. G. ( 1997; ). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606.[CrossRef]
    [Google Scholar]
  23. Gu, W., Shi, X.-L. & Roeder, R. G. ( 1997; ). Synergistic activation of transcription by CBP and p53. Nature 387, 819–823.[CrossRef]
    [Google Scholar]
  24. Hamamori, Y., Sartorelli, V., Ogryzko, V., Puri, P. L. Wu, H.-Y., Wang, J. Y. J., Nakatani, Y. & Kedes, L. ( 1999; ). Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein Twist and the adenoviral oncoprotein E1A. Cell 96, 405–413.[CrossRef]
    [Google Scholar]
  25. Hamel, F. & Simard, C. ( 2003; ). Mapping of the bovine herpesvirus 1 glycoprotein C promoter region and its specific transactivation by the viral BICP27 gene product. Arch Virol 148, 137–152.[CrossRef]
    [Google Scholar]
  26. Henderson, G., Zhang, Y. & Jones, C. ( 2005; ). The bovine herpesvirus 1 gene encoding infected cell protein 0 (bICP0) can inhibit interferon-dependent transcription in the absence of other viral genes. J Gen Virol 86, 2697–2702.[CrossRef]
    [Google Scholar]
  27. Herrera, F. J. & Triezenberg, S. J. ( 2004; ). VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 78, 9689–9696.[CrossRef]
    [Google Scholar]
  28. Hobbs, W. E., II & DeLuca, N. A. ( 1999; ). Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 73, 8245–8255.
    [Google Scholar]
  29. Hossain, A., Schang, L. M. & Jones, C. ( 1995; ). Identification of gene products encoded by the latency-related gene of bovine herpesvirus 1. J Virol 69, 5345–5352.
    [Google Scholar]
  30. Inman, M., Lovato, L., Doster, A. & Jones, C. ( 2001a; ). A mutation in the latency-related gene of bovine herpesvirus 1 leads to impaired ocular shedding in acutely infected calves. J Virol 75, 8507–8515.[CrossRef]
    [Google Scholar]
  31. Inman, M., Zhang, Y., Geiser, V. & Jones, C. ( 2001b; ). The zinc ring finger in the bICP0 protein encoded by bovine herpesvirus-1 mediates toxicity and activates productive infection. J Gen Virol 82, 483–492.
    [Google Scholar]
  32. Inman, M., Lovato, L., Doster, A. & Jones, C. ( 2002; ). A mutation in the latency-related gene of bovine herpesvirus 1 disrupts the latency reactivation cycle in calves. J Virol 76, 6771–6779.[CrossRef]
    [Google Scholar]
  33. Jones, C. ( 2003; ). Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev 16, 79–95.[CrossRef]
    [Google Scholar]
  34. Kent, J. R., Zeng, P.-Y., Atanasiu, D., Gardner, J., Fraser, N. W. & Berger, S. L. ( 2004; ). During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol 78, 10178–10186.[CrossRef]
    [Google Scholar]
  35. Kutish, G., Mainprize, T. & Rock, D. ( 1990; ). Characterization of the latency-related transcriptionally active region of the bovine herpesvirus 1 genome. J Virol 64, 5730–5737.
    [Google Scholar]
  36. Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J. & Livingston, D. M. ( 1997; ). Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827.[CrossRef]
    [Google Scholar]
  37. Lomonte, P. & Everett, R. D. ( 1999; ). Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G1 into S phase of the cell cycle. J Virol 73, 9456–9467.
    [Google Scholar]
  38. Lundblad, J. R., Kwok, R. P. S., Laurance, M. E., Harter, M. L. & Goodman, R. H. ( 1995; ). Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374, 85–88.[CrossRef]
    [Google Scholar]
  39. Maul, G. G. & Everett, R. D. ( 1994; ). The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J Gen Virol 75, 1223–1233.[CrossRef]
    [Google Scholar]
  40. Maul, G. G., Guldner, H. H. & Spivack, J. G. ( 1993; ). Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0). J Gen Virol 74, 2679–2690.[CrossRef]
    [Google Scholar]
  41. Munshi, N., Agalioti, T., Lomvardas, S., Merika, M., Chen, G. & Thanos, D. ( 2001; ). Coordination of a transcriptional switch by HMGI(Y) acetylation. Science 293, 1133–1136.[CrossRef]
    [Google Scholar]
  42. Nemethova, M. & Wintersberger, E. ( 1999; ). Polyomavirus large T antigen binds the transcriptional coactivator protein p300. J Virol 73, 1734–1739.
    [Google Scholar]
  43. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. ( 1996; ). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959.[CrossRef]
    [Google Scholar]
  44. Parkinson, J. & Everett, R. D. ( 2000; ). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74, 10006–10017.[CrossRef]
    [Google Scholar]
  45. Patel, D., Huang, S.-M., Baglia, L. A. & McCance, D. J. ( 1999; ). The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 18, 5061–5072.[CrossRef]
    [Google Scholar]
  46. Poon, A. P. W., Liang, Y. & Roizman, B. ( 2003; ). Herpes simplex virus 1 gene expression is accelerated by inhibitors of histone deacetylases in rabbit skin cells infected with a mutant carrying a cDNA copy of the infected-cell protein no. 0. J Virol 77, 12671–12678.[CrossRef]
    [Google Scholar]
  47. Saydam, O., Vogt, B., Ackermann, M. & Schwyzer, M. ( 2002; ). Search for physical interaction between BICP0 of bovine herpesvirus-1 and p53 tumor suppressor protein. Vet Microbiol 86, 95–102.[CrossRef]
    [Google Scholar]
  48. Sterner, D. E. & Berger, S. L. ( 2000; ). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435–459.[CrossRef]
    [Google Scholar]
  49. Tikoo, S. K., Campos, M. & Babiuk, L. A. ( 1995; ). Bovine herpesvirus 1 (BHV-1): biology, pathogenesis, and control. Adv Virus Res 45, 191–223.
    [Google Scholar]
  50. Trimarchi, J. M. & Lees, J. A. ( 2002; ). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3, 11–20.
    [Google Scholar]
  51. Tsukiyama, T. & Wu, C. ( 1997; ). Chromatin remodeling and transcription. Curr Opin Genet Dev 7, 182–191.[CrossRef]
    [Google Scholar]
  52. Van Orden, K., Yan, J.-P., Ulloa, A. & Nyborg, J. K. ( 1999; ). Binding of the human T-cell leukemia virus Tax protein to the coactivator CBP interferes with CBP-mediated transcriptional control. Oncogene 18, 3766–3772.[CrossRef]
    [Google Scholar]
  53. Van Sant, C., Hagglund, R., Lopez, P. & Roizman, B. ( 2001; ). The infected cell protein 0 of herpes simplex virus 1 dynamically interacts with proteasomes, binds and activates the cdc34 E2 ubiquitin-conjugating enzyme, and possesses in vitro E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 98, 8815–8820.[CrossRef]
    [Google Scholar]
  54. Vo, N. & Goodman, R. H. ( 2001; ). CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276, 13505–13508.[CrossRef]
    [Google Scholar]
  55. Wang, L., Grossman, S. R. & Kieff, E. ( 2000; ). Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A 97, 430–435.[CrossRef]
    [Google Scholar]
  56. Weaver, B. K., Kumar, K. P. & Reich, N. C. ( 1998; ). Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol 18, 1359–1368.
    [Google Scholar]
  57. Wirth, U. V., Gunkel, K., Engels, M. & Schwyzer, M. ( 1989; ). Spatial and temporal distribution of bovine herpesvirus 1 transcripts. J Virol 63, 4882–4889.
    [Google Scholar]
  58. Wirth, U. V., Vogt, B. & Schwyzer, M. ( 1991; ). The three major immediate-early transcripts of bovine herpesvirus 1 arise from two divergent and spliced transcription units. J Virol 65, 195–205.
    [Google Scholar]
  59. Wirth, U. V., Fraefel, C., Vogt, B., Vlček, Č., Pačes, V. & Schwyzer, M. ( 1992; ). Immediate-early RNA 2.9 and early RNA 2.6 of bovine herpesvirus 1 are 3′ coterminal and encode a putative zinc finger transactivator protein. J Virol 66, 2763–2772.
    [Google Scholar]
  60. Yoneyama, M., Suhara, W., Fukuhara, M., Fukuda, M., Nishida, E. & Fujita, T. ( 1998; ). Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J 17, 1087–1095.[CrossRef]
    [Google Scholar]
  61. Zhang, Y. & Jones, C. ( 2001; ). The bovine herpesvirus 1 immediate-early protein (bICP0) associates with histone deacetylase 1 to activate transcription. J Virol 75, 9571–9578.[CrossRef]
    [Google Scholar]
  62. Zhang, Y., Zhou J. & Jones, C. ( 2005; ). Identification of functional domains within the bICP0 protein encoded by bovine herpesvirus 1. J Gen Virol 86, 879–886.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81766-0
Loading
/content/journal/jgv/10.1099/vir.0.81766-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error