1887

Abstract

The role of CC chemokines in protection against mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission is not well understood. It was observed that mitogen-induced production of CCL3 and CCL4 by cord-blood mononuclear cells was increased among infants born to HIV-positive compared with HIV-negative mothers, and that a deficiency in production of CCL3 was associated with increased susceptibility to intrapartum HIV-1 infection. CCL3-L1 gene copy number was associated with CCL3 production and with vertical transmission. However, at equivalent CCL3-L1 gene copy numbers, infants who acquired HIV-1 infection relative to their exposed but uninfected counterparts had lower production of CCL3, suggesting that they may harbour some non-functional copies of this gene. Nucleotide changes that may influence CCL3 production were evident in the CCL3 and CCL3-L1 genes upstream of exon 2. Our findings suggest that infants who display a deficient-production phenotype of CCL3 are at increased risk of acquiring HIV-1, indicating that this chemokine in particular plays an essential role in protective immunity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81709-0
2006-07-01
2021-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/2055.html?itemId=/content/journal/jgv/10.1099/vir.0.81709-0&mimeType=html&fmt=ahah

References

  1. Aquaro S., Menten P., Struyf S., Proost P., Van Damme J., De Clercq E., Schols D. 2001; The LD78 β isoform of MIP-1 α is the most potent CC-chemokine in inhibiting CCR5-dependent human immunodeficiency virus type 1 replication in human macrophages. J Virol 75:4402–4406 [CrossRef]
    [Google Scholar]
  2. Brander C., Walker B. D. 2003; Gradual adaptation of HIV to human host populations: good or bad news?. Nat Med 9:1359–1362 [CrossRef]
    [Google Scholar]
  3. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. 1995; Identification of RANTES, MIP-1 α , and MIP-1 β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815 [CrossRef]
    [Google Scholar]
  4. Deng H., Liu R., Ellmeier W. & 12 other authors 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666 [CrossRef]
    [Google Scholar]
  5. Dragic T., Litwin V., Allaway G. P. & 8 other authors 1996; HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673 [CrossRef]
    [Google Scholar]
  6. Drake P. M., Gunn M. D., Charo I. F., Tsou C.-L., Zhou Y., Huang L., Fisher S. J. 2001; Human placental cytotrophoblasts attract monocytes and CD56bright natural killer cells via the actions of monocyte inflammatory protein 1 α . J Exp Med 193:1199–1212 [CrossRef]
    [Google Scholar]
  7. Goila R., Kumar F., Banerjea A. C. 2001; MIP-1 α promoter polymorphism in humans and monkeys: identification of two polymorphic regions characterized by the insertion of unique sequences in monkeys. AIDS 15:1065–1067 [CrossRef]
    [Google Scholar]
  8. Gonzalez E., Dhanda R., Bamshad M. & 13 other authors 2001; Global survey of genetic variation in CCR5 , RANTES , and MIP-1α : impact on the epidemiology of the HIV-1 pandemic. Proc Natl Acad Sci U S A 98:5199–5204 [CrossRef]
    [Google Scholar]
  9. Gonzalez E., Kulkarni H., Bolivar H. & 19 other authors 2005; The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440 [CrossRef]
    [Google Scholar]
  10. Gray G. E., Urban M., Chersich M. F., Bolton C., van Niekerk R., Violari A., Stevens W., McIntyre J. A. 2005; A randomized trial of two postexposure prophylaxis regimens to reduce mother-to-child HIV-1 transmission in infants of untreated mothers. AIDS 19:1289–1297 [CrossRef]
    [Google Scholar]
  11. Heeney J. L., Teeuwsen V. J. P., van Gils M. & 9 other authors 1998; β -Chemokines and neutralizing antibody titers correlate with sterilizing immunity generated in HIV-1 vaccinated macaques. Proc Natl Acad Sci U S A 95:10803–10808 [CrossRef]
    [Google Scholar]
  12. Kuhn L., Coutsoudis A., Moodley D., Trabattoni D., Mngqundaniso N., Shearer G. M., Clerici M., Coovadia H. M., Stein Z. 2001a; T-helper cell responses to HIV envelope peptides in cord blood: protection against intrapartum and breast-feeding transmission. AIDS 15:1–9 [CrossRef]
    [Google Scholar]
  13. Kuhn L., Meddows-Taylor S., Gray G., Trabattoni D., Clerici M., Shearer G. M., Tiemessen C. 2001b; Reduced HIV-stimulated T-helper cell reactivity in cord blood with short-course antiretroviral treatment for prevention of maternal–infant transmission. Clin Exp Immunol 123:443–450 [CrossRef]
    [Google Scholar]
  14. LaRussa P., Magder L. S., Pitt J. & 8 other authors 2002; Association of HIV-1 viral phenotype in the MT-2 assay with perinatal HIV transmission. J Acquir Immune Defic Syndr 30:88–94 [CrossRef]
    [Google Scholar]
  15. Lederman M. M., Veazey R. S., Offord R. & 9 other authors 2004; Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306:485–487 [CrossRef]
    [Google Scholar]
  16. Lehner T., Wang Y., Cranage M. & 11 other authors 1996; Protective mucosal immunity elicited by targeted iliac lymph node immunization with a subunit SIV envelope and core vaccine in macaques. Nat Med 2:767–775 [CrossRef]
    [Google Scholar]
  17. Lillard J. W. Jr, Boyaka P. N., Hedrick J. A., Zlotnik A., McGhee J. R. 1999; Lymphotactin acts as an innate mucosal adjuvant. J Immunol 162:1959–1965
    [Google Scholar]
  18. Lillard J. W. Jr, Boyaka P. N., Taub D. D., McGhee J. R. 2001; RANTES potentiates antigen-specific mucosal immune responses. J Immunol 166:162–169 [CrossRef]
    [Google Scholar]
  19. Lillard J. W. Jr, Singh U. P., Boyaka P. N., Singh S., Taub D. D., McGhee J. R. 2003; MIP-1 α and MIP-1 β differentially mediate mucosal and systemic adaptive immunity. Blood 101:807–814 [CrossRef]
    [Google Scholar]
  20. Matsukawa A., Hogaboam C. M., Lukacs N. W., Kunkel S. L. 2000; Chemokines and innate immunity. Rev Immunogenet 2:339–358
    [Google Scholar]
  21. Menten P., Struyf S., Schutyser E., Wuyts A., De Clercq E., Schols D., Proost P., Van Damme J. 1999; The LD78 β isoform of MIP-1 α is the most potent CCR5 agonist and HIV-1-inhibiting chemokine. J Clin Invest 104:R1–R5 [CrossRef]
    [Google Scholar]
  22. Menten P., Wuyts A., Van Damme J. 2002; Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13:455–481 [CrossRef]
    [Google Scholar]
  23. Nakao M., Nomiyama H., Shimada K. 1990; Structures of human genes coding for cytokine LD78 and their expression. Mol Cell Biol 10:3646–3658
    [Google Scholar]
  24. Nibbs R. J. B., Yang J., Landau N. R., Mao J.-H., Graham G. J. 1999; LD78 β a non-allelic variant of human MIP-1 α (LD78 α ), has enhanced receptor interactions and potent HIV suppressive activity. J Biol Chem 274:17478–17483 [CrossRef]
    [Google Scholar]
  25. Nibbs R. J. B., Kriehuber E., Ponath P. D. & 8 other authors 2001; The β -chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol 158:867–877 [CrossRef]
    [Google Scholar]
  26. O'Brien S. J., Nelson G. W. 2004; Human genes that limit AIDS. Nat Genet 36:565–574 [CrossRef]
    [Google Scholar]
  27. Ometto L., Zanotto C., Maccabruni A., Caselli D., Truscia D., Giaquinto C., Ruga E., Chieco-Bianchi L., De Rossi A. 1995; Viral phenotype and host-cell susceptibility to HIV-1 infection as risk factors for mother-to-child HIV-1 transmission. AIDS 9:427–434 [CrossRef]
    [Google Scholar]
  28. Paxton W. A., Martin S. R., Tse D. & 8 other authors 1996; Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 2:412–417 [CrossRef]
    [Google Scholar]
  29. Proost P., Menten P., Struyf S., Schutyser E., De Meester I., Van Damme J. 2000; Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78 β into a most efficient monocyte attractant and CCR1 agonist. Blood 96:1674–1680
    [Google Scholar]
  30. Stratov I., DeRose R., Purcell D. F. J., Kent S. J. 2004; Vaccines and vaccine strategies against HIV. Curr Drug Targets 5:71–88 [CrossRef]
    [Google Scholar]
  31. Struyf S., Menten P., Lenaerts J.-P., Put W., D'Haese A., De Clercq E., Schols D., Proost P., Van Damme J. 2001; Diverging binding capacities of natural LD78 β isoforms of macrophage inflammatory protein-1 α to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol 31:2170–2178 [CrossRef]
    [Google Scholar]
  32. Townson J. R., Barcellos L. F., Nibbs R. J. B. 2002; Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol 32:3016–3026 [CrossRef]
    [Google Scholar]
  33. Van Damme J., Struyf S., Wuyts A., Van Coillie E., Menten P., Schols D., Sozzani S., De Meester I., Proost P. 1999; The role of CD26/DPP IV in chemokine processing. Chem Immunol 72:42–56
    [Google Scholar]
  34. Wasik T. J., Bratosiewicz J., Wierzbicki A. & 9 other authors 1999; Protective role of β -chemokines associated with HIV-specific Th responses against perinatal HIV transmission. J Immunol 162:4355–4364
    [Google Scholar]
  35. Zagury D., Lachgar A., Chams V. & 11 other authors 1998; C-C chemokines, pivotal in protection against HIV type 1 infection. Proc Natl Acad Sci U S A 95:3857–3861 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81709-0
Loading
/content/journal/jgv/10.1099/vir.0.81709-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error