1887

Abstract

Human immunodeficiency virus type 1 subtype C isolates belong to one of the most prevalent strains circulating worldwide and are responsible for the majority of new infections in the sub-Saharan region and other highly populated areas of the globe. In this work, the impact of drug-resistance mutations in the protease gene of subtype C viruses was analysed and compared with that of subtype B counterparts. A series of recombinant subtype C and B viruses was constructed carrying indinavir (IDV)-resistance mutations (M46V, I54V, V82A and L90M) and their susceptibility to six FDA-approved protease inhibitor compounds (amprenavir, indinavir, lopinavir, ritonavir, saquinavir and nelfinavir) was determined. A different impact of these mutations was found when nelfinavir and lopinavir were tested. The IDV drug-resistance mutations in the subtype C protease backbone were retained for a long period in culture without selective pressure when compared with those in subtype B counterparts in washout experiments.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81517-0
2006-05-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1303.html?itemId=/content/journal/jgv/10.1099/vir.0.81517-0&mimeType=html&fmt=ahah

References

  1. Boden, D. & Markowitz, M. ( 1998; ). Resistance to human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother 42, 2775–2783.
    [Google Scholar]
  2. Calazans, A., Brindeiro, R., Brindeiro, P. & 7 other authors ( 2005; ). Low accumulation of L90M in protease from subtype F HIV-1 with resistance to protease inhibitors is caused by the L89M polymorphism. J Infect Dis 191, 1961–1970.[CrossRef]
    [Google Scholar]
  3. Cane, P. A., de Ruiter, A., Rice, P., Wiselka, M., Fox, R. & Pillay, D. ( 2001; ). Resistance-associated mutations in the human immunodeficiency virus type 1 subtype C protease gene from treated and untreated patients in the United Kingdom. J Clin Microbiol 39, 2652–2654.[CrossRef]
    [Google Scholar]
  4. Carpenter, C. C., Fischl, M. A., Hammer, S. M. & 11 other authors ( 1996; ). Antiretroviral therapy for HIV infection in 1996. Recommendations of an international panel. JAMA 276, 146–154.[CrossRef]
    [Google Scholar]
  5. Carrion, G., Eyzaguirre, L., Montano, S. M. & 18 other authors ( 2004; ). Documentation of subtype C HIV type 1 strains in Argentina, Paraguay, and Uruguay. AIDS Res Hum Retroviruses 20, 1022–1025.[CrossRef]
    [Google Scholar]
  6. Condra, J. H., Schleif, W. A., Blahy, O. M. & 12 other authors ( 1995; ). In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374, 569–571.[CrossRef]
    [Google Scholar]
  7. Condra, J. H., Holder, D. J., Schleif, W. A. & 20 other authors ( 1996; ). Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol 70, 8270–8276.
    [Google Scholar]
  8. Dumans, A. T., Soares, M. A., Machado, E. S., Hué, S., Brindeiro, R. M., Pillay, D. & Tanuri, A. ( 2004; ). Synonymous genetic polymorphisms within Brazilian human immunodeficiency virus type 1 subtypes may influence mutational routes to drug resistance. J Infect Dis 189, 1232–1238.[CrossRef]
    [Google Scholar]
  9. García-Lerma, J. G., Nidtha, S., Blumoff, K., Weinstock, H. & Heneine, W. ( 2001; ). Increased ability for selection of zidovudine resistance in a distinct class of wild-type HIV-1 from drug-naive persons. Proc Natl Acad Sci U S A 98, 13907–13912.[CrossRef]
    [Google Scholar]
  10. Gonzalez, L. M. F., Brindeiro, R. M., Tarin, M., Calazans, A., Soares, M. A., Cassol, S. & Tanuri, A. ( 2003; ). In vitro hypersusceptibility of human immunodeficiency virus type 1 subtype C protease to lopinavir. Antimicrob Agents Chemother 47, 2817–2822.[CrossRef]
    [Google Scholar]
  11. Gonzalez, L. M. F., Brindeiro, R. M., Aguiar, R. S., Pereira, H. S., Abreu, C. M., Soares, M. A. & Tanuri, A. ( 2004; ). Impact of nelfinavir resistance mutations on in vitro phenotype, fitness, and replication capacity of human immunodeficiency virus type 1 with subtype B and C proteases. Antimicrob Agents Chemother 48, 3552–3555.[CrossRef]
    [Google Scholar]
  12. Goudsmit, J., De Ronde, A., Ho, D. D. & Perelson, A. S. ( 1996; ). Human immunodeficiency virus fitness in vivo: calculations based on a single zidovudine resistance mutation at codon 215 of reverse transcriptase. J Virol 70, 5662–5664.
    [Google Scholar]
  13. Goudsmit, J., de Ronde, A., de Rooij, E. & de Boer, R. ( 1997; ). Broad spectrum of in vivo fitness of human immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J Virol 71, 4479–4484.
    [Google Scholar]
  14. Grossman, Z., Paxinos, E. E., Averbuch, D. & 10 other authors ( 2004; ). Mutation D30N is not preferentially selected by human immunodeficiency virus type 1 subtype C in the development of resistance to nelfinavir. Antimicrob Agents Chemother 48, 2159–2165.[CrossRef]
    [Google Scholar]
  15. Gulick, R. M., Mellors, J. W., Havlir, D. & 12 other authors ( 1998; ). Simultaneous vs sequential initiation of therapy with indinavir, zidovudine and lamivudine for HIV-1 infection. JAMA 280, 35–41.[CrossRef]
    [Google Scholar]
  16. Haas, D. W., Zala, C., Schrader, S. & 6 other authors ( 2003; ). Therapy with atazanavir plus saquinavir in patients failing highly active antiretroviral therapy: a randomized comparative pilot trial. AIDS 17, 1339–1349.[CrossRef]
    [Google Scholar]
  17. Hammer, S. M., Squires, K. E., Hughes, M. D. & 9 other authors ( 1997; ). A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N Engl J Med 337, 725–733.[CrossRef]
    [Google Scholar]
  18. Harrigan, P. R., Bloor, S. & Larder, B. A. ( 1998; ). Relative replicative fitness of zidovudine-resistant human immunodeficiency virus type 1 isolates in vitro. J Virol 72, 3773–3778.
    [Google Scholar]
  19. Harrigan, P. R., Montaner, J. S., Wegner, S. A., Verbiest, W., Miller, V., Wood, R. & Larder, B. A. ( 2001; ). World-wide variation in HIV-1 phenotypic susceptibility in untreated individuals: biologically relevant values for resistance testing. AIDS 15, 1671–1677.[CrossRef]
    [Google Scholar]
  20. Hertogs, K., de Béthune, M.-P., Miller, V. & 14 other authors ( 1998; ). A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant human immunodeficiency virus type 1 isolates from patients treated with antiretroviral drugs. Antimicrob Agents Chemother 42, 269–276.[CrossRef]
    [Google Scholar]
  21. Hirsch, M. S., Brun-Vézinet, F., D'Aquila, R. T. & 11 other authors ( 2000; ). Antiretroviral drug resistance testing in adult HIV-1 infection: recommendations of an International AIDS Society – USA panel. JAMA 283, 2417–2426.[CrossRef]
    [Google Scholar]
  22. Iversen, A. K. N., Shafer, R. W., Wehrly, K., Winters, M. A., Mullins, J. L., Chesebro, B. & Merigan, T. C. ( 1996; ). Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. J Virol 70, 1086–1090.
    [Google Scholar]
  23. Jülg, B. & Goebel, F. D. ( 2005; ). HIV genetic diversity: any implications for drug resistance? Infection 33, 299–301.[CrossRef]
    [Google Scholar]
  24. Kantor, R. & Katzenstein, D. ( 2003; ). Polymorphism in HIV-1 non-subtype B protease and reverse transcriptase and its potential impact on drug susceptibility and drug resistance evolution. AIDS Rev 5, 25–35.
    [Google Scholar]
  25. Kantor, R., Machekano, R., Gonzales, M. J., Dupnik, K., Schapiro, J. M. & Shafer, R. W. ( 2001; ). Human immunodeficiency virus reverse transcriptase and protease sequence database: an expanded data model integrating natural language text and sequence analysis programs. Nucleic Acids Res 29, 296–299.[CrossRef]
    [Google Scholar]
  26. Kantor, R., Katzenstein, D. A., Efron, B. & 28 other authors ( 2005; ). Impact of HIV-1 subtype and antiretroviral therapy on protease and reverse transcriptase genotype: results of a global collaboration. PLoS Med 2, e112.[CrossRef]
    [Google Scholar]
  27. Kijak, G. H., Rubio, A. E., Pampuro, S. E., Zala, C., Cahn, P., Galli, R., Montaner, J. S. & Salomón, H. ( 2003; ). Discrepant results in the interpretation of HIV-1 drug-resistance genotypic data among widely used algorithms. HIV Med 4, 72–78.[CrossRef]
    [Google Scholar]
  28. Larder, B. A., Kemp, S. D. & Harrigan, P. R. ( 1995; ). Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 269, 696–699.[CrossRef]
    [Google Scholar]
  29. Lillehoj, E. P., Salazar, F. H. R., Mervis, R. J., Raum, M. G., Chan, H. W., Ahmad, N. & Venkatesan, S. ( 1988; ). Purification and structural characterization of the putative gag-pol protease of human immunodeficiency virus. J Virol 62, 3053–3058.
    [Google Scholar]
  30. Loemba, H., Brenner, B., Parniak, M. A., Ma'ayan, S., Spira, B., Moisi, D., Oliveira, M., Detorio, M. & Wainberg, M. A. ( 2002; ). Genetic divergence of human immunodeficiency virus type 1 Ethiopian clade C reverse transcriptase (RT) and rapid development of resistance against nonnucleoside inhibitors of RT. Antimicrob Agents Chemother 46, 2087–2094.[CrossRef]
    [Google Scholar]
  31. Martinez-Picado, J., Savara, A. V., Sutton, L. & D'Aquila, R. T. ( 1999; ). Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol 73, 3744–3752.
    [Google Scholar]
  32. Maschera, B., Furfine, E. & Blair, E. D. ( 1995; ). Analysis of resistance to human immunodeficiency virus type 1 protease inhibitors by using matched bacterial expression and proviral infection vectors. J Virol 69, 5431–5436.
    [Google Scholar]
  33. Miller, V., Sabin, C., Hertogs, K. & 10 other authors ( 2000; ). Virological and immunological effects of treatment interruptions in HIV-1 infected patients with treatment failure. AIDS 14, 2857–2867.[CrossRef]
    [Google Scholar]
  34. Molla, A., Korneyeva, M., Gao, Q. & 14 other authors ( 1996; ). Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med 2, 760–766.[CrossRef]
    [Google Scholar]
  35. Osmanov, S., Pattou, C., Walker, N., Schwardlander, B. & Esparza, J. ( 2002; ). Estimated global distribution and regional spread of HIV-1 genetic subtypes in the year 2000. J Acquir Immune Defic Syndr 29, 184–190.[CrossRef]
    [Google Scholar]
  36. Patick, A. K., Duran, M., CaoY. & 7 other authors ( 1998; ). Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolated from patients treated with the protease inhibitor nelfinavir. Antimicrob Agents Chemother 42, 2637–2644.
    [Google Scholar]
  37. Picchio, G. R., Valdez, H., Sabbe, R., Landay, A. L., Kuritzkes, D. R., Lederman, M. M. & Mosier, D. E. ( 2000; ). Altered viral fitness of HIV-1 following failure of protease inhibitor-based therapy. J Acquir Immune Defic Syndr 25, 289–295.[CrossRef]
    [Google Scholar]
  38. Pieniazek, D., Rayfield, M., Hu, D. J. & 9 other authors ( 2000; ). Protease sequences from HIV-1 group M subtypes A–H reveal distinct amino acid mutation patterns associated with protease resistance in protease inhibitor-naive individuals worldwide. HIV Variant Working Group. AIDS 14, 1489–1495.[CrossRef]
    [Google Scholar]
  39. Piliero, P. J. ( 2002; ). Atazanavir: a novel HIV-1 protease inhibitor. Expert Opin Investig Drugs 11, 1295–1301.[CrossRef]
    [Google Scholar]
  40. Puchhammer-Stöckl, E., Kunz, C., Faatz, E., Kasper, P. & Heinz, F. X. ( 1998; ). Introduction of HIV-1 subtypes C, E and A into Austria. Clin Diagn Virol 9, 25–28.[CrossRef]
    [Google Scholar]
  41. Robertson, D. L., Hahn, B. H. & Sharp, P. M. ( 1995a; ). Recombination in AIDS viruses. J Mol Evol 40, 249–259.[CrossRef]
    [Google Scholar]
  42. Robertson, D. L., Sharp, P. M., McCutchan, F. E. & Hahn, B. H. ( 1995b; ). Recombination in HIV-1. Nature 374, 124–126.
    [Google Scholar]
  43. Ruiz, L., Nijhuis, M., Boucher, C. & 9 other authors ( 1998; ). Efficacy of adding indinavir to previous reverse transcriptase nucleoside analogues in relation to genotypic and phenotypic resistance development in advanced HIV-1-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol 19, 19–28.[CrossRef]
    [Google Scholar]
  44. Sanne, I., Piliero, P., Squires, K., Thiry, A. & Schnittman, S. ( 2003; ). Results of a phase 2 clinical trial at 48 weeks (AI424-007): a dose-ranging, safety, and efficacy comparative trial of atazanavir at three doses in combination with didanosine and stavudine in antiretroviral-naive subjects. J Acquir Immune Defic Syndr 32, 18–29.[CrossRef]
    [Google Scholar]
  45. Schmidt, B., Walter, H., Moschik, B. & 7 other authors ( 2000; ). Simple algorithm derived from a geno-/phenotypic database to predict HIV-1 protease inhibitor resistance. AIDS 14, 1731–1738.[CrossRef]
    [Google Scholar]
  46. Schmidt, B., Walter, H., Zeitler, N. & Korn, K. ( 2002; ). Genotypic drug resistance interpretation systems – the cutting edge of antiretroviral therapy. AIDS Rev 4, 148–156.
    [Google Scholar]
  47. Schmit, J. C., Cogniaux, J., Hermans, P. & 8 other authors ( 1996; ). Multiple drug resistance to nucleoside analogues and nonnucleoside reverse transcriptase inhibitors in an efficiently replicating human immunodeficiency virus type 1 patient strain. J Infect Dis 174, 962–968.[CrossRef]
    [Google Scholar]
  48. Shafer, R. W., Hsu, P., Patick, A. K., Craig, C. & Brendel, V. ( 1999; ). Identification of biased amino acid substitution patterns in human immunodeficiency virus type 1 isolates from patients treated with protease inhibitors. J Virol 73, 6197–6202.
    [Google Scholar]
  49. Sharma, P. L. & Crumpacker, C. S. ( 1997; ). Attenuated replication of human immunodeficiency virus type 1 with a didanosine-selected reverse transcriptase mutation. J Virol 71, 8846–8851.
    [Google Scholar]
  50. Sonnerborg, A., Durdevic, S., Giesecke, J. & Sallberg, M. ( 1997; ). Dynamics of the HIV-1 subtype distribution in the Swedish HIV-1 epidemic during the period 1980 to 1993. AIDS Res Hum Retroviruses 13, 343–345.[CrossRef]
    [Google Scholar]
  51. Weber, J., Rangel, H. R., Chakraborty, B. & 12 other authors ( 2003; ). Role of baseline pol genotype in HIV-1 fitness evolution. J Acquir Immune Defic Syndr 33, 448–460.[CrossRef]
    [Google Scholar]
  52. Ziermann, R., Limoli, K., Das, K., Arnold, E., Petropoulos, C. J. & Parkin, N. T. ( 2000; ). A mutation in human immunodeficiency virus type 1 protease, N88S, that causes in vitro hypersensitivity to amprenavir. J Virol 74, 4414–4419.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81517-0
Loading
/content/journal/jgv/10.1099/vir.0.81517-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1303 – 1309

Primers used in site-directed mutagenesis to introduce protease subtype C signatures in clone pNL4-3 [ PDF] (91 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error