1887

Abstract

An alignment was made of the deduced amino acid sequences of the entire capsid protein VP1 of all human rhinovirus (HRV) prototype strains to examine conserved motifs in the primary structure. A set of previously proposed crucially important amino acids in the footprints of the two known receptor molecules was not conserved in a receptor group-specific way. In contrast, VP1 and VP3 amino acids in the minor receptor-group strains corresponding to most of the predicted ICAM-1 footprint definitely differed from those of the ICAM-1-using major receptor-group strains. Previous antiviral-sensitivity classification showed an almost-complete agreement with the species classification and a fair correlation with amino acids aligning in the antiviral pocket. It was concluded that systematic alignment of sequences of related virus strains can be used to test hypotheses derived from molecular studies of individual model viruses and to generate ideas for future studies on virus structure and replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81137-0
2006-01-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/1/129.html?itemId=/content/journal/jgv/10.1099/vir.0.81137-0&mimeType=html&fmt=ahah

References

  1. Abraham G., Colonno R. J. 1984; Many rhinovirus serotypes share the same cellular receptor. J Virol 51:340–345
    [Google Scholar]
  2. Airaksinen A., Roivainen M., Hovi T. 2001; Coxsackievirus A9 VP1 mutants with enhanced or hindered A particle formation and decreased infectivity. J Virol 75:952–960 [CrossRef]
    [Google Scholar]
  3. Andries K., Dewindt B., Snoeks J., Willebrords R. 1989; Lack of quantitative correlation between inhibition of replication of rhinoviruses by an antiviral drug and their stabilization. Arch Virol 106:51–61 [CrossRef]
    [Google Scholar]
  4. Andries K., Dewindt B., Snoeks J., Wouters L., Moereels H., Lewi P. J., Janssen P. A. 1990; Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J Virol 64:1117–1123
    [Google Scholar]
  5. Arnold E., Rossmann M. G. 1988; The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure. Acta Crystallogr A 44:270–282 [CrossRef]
    [Google Scholar]
  6. Bella J., Rossmann M. G. 1999; Review: rhinoviruses and their ICAM receptors. J Struct Biol 128:69–74 [CrossRef]
    [Google Scholar]
  7. Bella J., Kolatkar P. R., Marlor C. W., Greve J. M., Rossmann M. G. 1998; The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc Natl Acad Sci U S A 95:4140–4145 [CrossRef]
    [Google Scholar]
  8. Blomqvist S. 2004; Epidemiology of human rhinoviruses . PhD thesis University of Helsinki. Publications of the National Public Health Institute; Finland: Series A (17
  9. Blomqvist S., Savolainen C., Råman L., Roivainen M., Hovi T. 2002; Human rhinovirus 87 and enterovirus 68 represent a unique serotype with rhinovirus and enterovirus features. J Clin Microbiol 40:4218–4223 [CrossRef]
    [Google Scholar]
  10. Chapman M. S., Minor I., Rossmann M. G., Diana G. D., Andries K. 1991; Human rhinovirus 14 complexed with antiviral compound R 61837. J Mol Biol 217:455–463 [CrossRef]
    [Google Scholar]
  11. Colonno R. J., Condra J. H., Mizutani S., Callahan P. L., Davies M.-E., Murcko M. A. 1988; Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc Natl Acad Sci U S A 85:5449–5453 [CrossRef]
    [Google Scholar]
  12. Crump C. E., Arruda E., Hayden F. G. 1993; In vitro inhibitory activity of soluble ICAM-1 for the numbered serotypes of human rhinovirus. Antivir Chem Chemother 4:323–327 [CrossRef]
    [Google Scholar]
  13. Davies M., Bruce C., Bewley K., Outlaw M., Mioulet V., Lloyd G., Clegg C. 2003; Poliovirus type 1 in working stocks of typed human rhinoviruses. Lancet 361:1187–1188 [CrossRef]
    [Google Scholar]
  14. Fricks C. E., Hogle J. M. 1990; Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol 64:1934–1945
    [Google Scholar]
  15. Hadfield A. T., Lee W., Zhao R., Oliveira M. A., Minor I., Rueckert R. R., Rossmann M. G. 1997; The refined structure of human rhinovirus 16 at 2·15 Å resolution: implications for the viral life cycle. Structure 5:427–441 [CrossRef]
    [Google Scholar]
  16. Hewat E. A., Neumann E., Conway J. F., Moser R., Ronacher B., Marlovits T. C., Blaas D. 2000; The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. EMBO J 19:6317–6325 [CrossRef]
    [Google Scholar]
  17. Hofer F., Gruenberger M., Kowalski H., Machat H., Huettinger M., Kuechler E., Blaas D. 1994; Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci U S A 91:1839–1842 [CrossRef]
    [Google Scholar]
  18. Hogle J. M., Chow M., Filman D. J. 1985; Three-dimensional structure of poliovirus at 2·9 Å resolution. Science 229:1358–1365 [CrossRef]
    [Google Scholar]
  19. Horsnell C., Gama R. E., Hughes P. J., Stanway G. 1995; Molecular relationships between 21 human rhinovirus serotypes. J Gen Virol 76:2549–2555 [CrossRef]
    [Google Scholar]
  20. Hovi T., Roivainen M. 1993; Peptide antisera targeted to a conserved sequence in poliovirus capsid protein VP1 cross-react widely with members of the genus Enterovirus . J Clin Microbiol 31:1083–1087
    [Google Scholar]
  21. Hovi T., Airaksinen A., Mulders M. N., Savolainen C. 2000; The length of capsid protein VP1 and other variables of human enteroviruses. In XI Meeting of the European Study Group on Molecular Biology of Picornaviruses, Baia delle, Zagare, Italy, abstract E12
    [Google Scholar]
  22. Kabsch W., Sander C. 1983; Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637 [CrossRef]
    [Google Scholar]
  23. Kim S., Smith T. J., Chapman M. S., Rossmann M. G., Pevear D. C., Dutko F. J., Felock P. J., Diana G. D., McKinlay M. A. 1989; Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210:91–111 [CrossRef]
    [Google Scholar]
  24. Kim K. H., Willingmann P., Gong Z. X. & 10 other authors 1993; A comparison of the anti-rhinoviral drug-binding pocket in HRV14 and HRV1A. J Mol Biol 230:206–227 [CrossRef]
    [Google Scholar]
  25. King A. M. Q., Brown F., Christian P. & 8 other authors 2000; Picornaviridae . In Virus Taxonomy Seventh Report of the International Committee on Taxonomy of Viruses . pp  657–678 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
  26. Kolatkar P. R., Bella J., Olson N. H., Bator C. M., Baker T. S., Rossmann M. G. 1999; Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J 18:6249–6259 [CrossRef]
    [Google Scholar]
  27. Laine P., Savolainen C., Blomqvist S., Hovi T. 2005; Phylogenetic analysis of human rhinovirus capsid protein VP1 and 2A protease coding sequences confirms shared genus-like relationships with human enteroviruses. J Gen Virol 86:697–706 [CrossRef]
    [Google Scholar]
  28. Ledford R. M., Patel N. R., Demenczuk T. M., Watanyar A., Herbertz T., Collett M. S., Pevear D. C. 2004; VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds. J Virol 78:3663–3674 [CrossRef]
    [Google Scholar]
  29. Lewi P. J. 1980; Spectral map analysis. Analysis of contrasts especially from log ratios. Chemom Intell Lab Syst 5:105–116
    [Google Scholar]
  30. Marlovits T. C., Abrahamsberg C., Blaas D. 1998; Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. J Virol 72:10246–10250
    [Google Scholar]
  31. Mischak H., Neubauer C., Kuechler E., Blaas D. 1988; Characteristics of the minor group receptor of human rhinoviruses. Virology 163:19–25 [CrossRef]
    [Google Scholar]
  32. Neumann E., Moser R., Snyers L., Blaas D., Hewat E. A. 2003; A cellular receptor of human rhinovirus type 2, the very-low-density lipoprotein receptor, binds to two neighboring proteins of the viral capsid. J Virol 77:8504–8511 [CrossRef]
    [Google Scholar]
  33. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W., II. 1997; GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4:14
    [Google Scholar]
  34. Oberste M. S., Maher K., Schnurr D. & 9 other authors 2004; Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses. J Gen Virol 85:2577–2584 [CrossRef]
    [Google Scholar]
  35. Olson N. H., Kolatkar P. R., Oliveira M. A., Cheng R. H., Greve J. M., McClelland A., Baker T. S., Rossmann M. G. 1993; Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci U S A 90:507–511 [CrossRef]
    [Google Scholar]
  36. Palmenberg A. 1989; Sequence alignments of picornaviral capsid proteins. In Molecular Aspects of Picornavirus Infection and Detection pp  211–241 Edited by Semler B. L., Ehrenfeld E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Prchla E., Kuechler E., Blaas D., Fuchs R. 1994; Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol 68:3713–3723
    [Google Scholar]
  38. Roivainen M., Piirainen L., Närvänen A., Rysä T., Hovi T. 1993; An immunodominant N-terminal region of VP1 protein of poliovirion that is buried in crystal structure can be exposed in solution. Virology 195:762–765 [CrossRef]
    [Google Scholar]
  39. Rossmann M. G., Palmenberg A. C. 1988; Conservation of the putative receptor attachment site in picornaviruses. Virology 164:373–382 [CrossRef]
    [Google Scholar]
  40. Rossmann M. G., Arnold E., Erickson J. W. & 10 other authors 1985; Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153 [CrossRef]
    [Google Scholar]
  41. Rossmann M. G., He Y., Kuhn R. J. 2002; Picornavirus–receptor interactions. Trends Microbiol 10:324–331 [CrossRef]
    [Google Scholar]
  42. Rueckert R. R. 1996; Picornaviridae : the viruses and their replication. In Fields Virology , 3rd edn. pp  609–654 Edited by Knipe D. M., Fields B. N., Howley P. E. Pennsylvania, PA: Lippincott-Raven;
    [Google Scholar]
  43. Savolainen C., Hovi T. 2003; Caveat: poliovirus may be hiding under other labels. Lancet 361:1145–1146 [CrossRef]
    [Google Scholar]
  44. Savolainen C., Blomqvist S., Mulders M. N., Hovi T. 2002; Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol 83:333–340
    [Google Scholar]
  45. Savolainen C., Laine P., Mulders M. N., Hovi T. 2004; Sequence analysis of human rhinoviruses in the RNA-dependent RNA polymerase coding region reveals large within-species variation. J Gen Virol 85:2271–2277 [CrossRef]
    [Google Scholar]
  46. Sherry B., Rueckert R. 1985; Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 53:137–143
    [Google Scholar]
  47. Sherry B., Mosser A. G., Colonno R. J., Rueckert R. R. 1986; Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J Virol 57:246–257
    [Google Scholar]
  48. Stanway G., Hughes P. J., Mountford R. C., Minor P. D., Almond J. W. 1984; The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res 12:7859–7875 [CrossRef]
    [Google Scholar]
  49. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  50. Uncapher C. R., DeWitt C. M., Colonno R. J. 1991; The major and minor group receptor families contain all but one human rhinovirus serotype. Virology 180:814–817 [CrossRef]
    [Google Scholar]
  51. Verdaguer N., Blaas D., Fita I. 2000; Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 300:1179–1194 [CrossRef]
    [Google Scholar]
  52. Verdaguer N., Fita I., Reithmayer M., Moser R., Blaas D. 2004; X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nat Struct Mol Biol 11:429–434 [CrossRef]
    [Google Scholar]
  53. Vlasak M., Blomqvist S., Hovi T., Hewat E., Blaas D. 2003; Sequence and structure of human rhinoviruses reveal the basis of receptor discrimination. J Virol 77:6923–6930 [CrossRef]
    [Google Scholar]
  54. Vlasak M., Roivainen M., Reithmayer M., Goesler I., Laine P., Snyers L., Hovi T., Blaas D. 2005; The minor receptor group of human rhinovirus (HRV) includes HRV23 and HRV25, but the presence of lysine in the VP1 HI loop is not sufficient for receptor binding. J Virol 79:7389–7395 [CrossRef]
    [Google Scholar]
  55. Zhao R., Pevear D. C., Kremer M. J., Giranda V. L., Kofron J. A., Kuhn R. J., Rossmann M. G. 1996; Human rhinovirus 3 at 3·0 Å resolution. Structure 4:1205–1220 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.81137-0
Loading
/content/journal/jgv/10.1099/vir.0.81137-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error