1887

Abstract

An artificial open reading frame (ORF) for bovine alpha interferon (boIFN-) with the codon preference of (BHV-1) glycoprotein B was constructed to assess the effect of expression of boIFN- by BHV-1 from an expression cassette. Transient expression of the ORF revealed that transfected cells secreted substantial amounts of biologically active boIFN-, which moderately inhibited replication of BHV-1 after stimulation of bovine cells with 10 U ml. The boIFN--encoding expression cassette was recombined into the glycoprotein E locus of the glycoprotein E-negative BHV-1 vaccine strain GKD. Cells infected with the resulting recombinant BHV-1/boIFN- secreted up to 10 U boIFN- per ml cell culture supernatant, which is about 40- to more than 100-fold the activity reached with other virus expression systems. Bioassays demonstrated that the BHV-1-expressed interferon induced a rapid and sustained antiviral state in stimulated bovine cells. Analysis of the growth properties of the recombinant revealed, depending on the cell line used, no or only slight inhibition in direct spreading from cell to cell and a modest delay in virus egress from infected cells. Final titres, however, were comparable to those reached by the parent strain. Penetration into cells was not affected. The results from this study demonstrate that BHV-1/boIFN- expresses high levels of boIFN-, grows to high titres in cell culture and thus represents a potential alternative means to deliver endogenously produced boIFN- for a period of time.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81094-0
2005-10-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2685.html?itemId=/content/journal/jgv/10.1099/vir.0.81094-0&mimeType=html&fmt=ahah

References

  1. Abril C., Engels M., Liman A., Hilbe M., Albini S., Franchini M., Suter M., Ackermann M. 2004; Both viral and host factors contribute to neurovirulence of bovine herpesviruses 1 and 5 in interferon receptor-deficient mice. J Virol 78:3644–3653 [CrossRef]
    [Google Scholar]
  2. Alcami A., Symons J. A., Smith G. L. 2000; The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol 74:11230–11239 [CrossRef]
    [Google Scholar]
  3. Au L.-C., Yang F.-Y., Yang W.-J., Lo S.-H., Kao C.-F. 1998; Gene synthesis by a LCR-based approach: high-level synthesis of leptin L54 using synthetic gene in Escherichia coli . Biochem Biophys Res Commun 248:200–203 [CrossRef]
    [Google Scholar]
  4. Babiuk L. A., Bielefeldt Ohmann H., Gifford G., Czarniecki C. W., Scialli V. T., Hamilton E. B. 1985; Effect of bovine α 1 interferon on bovine herpesvirus type 1-induced respiratory disease. J Gen Virol 66:2383–2394 [CrossRef]
    [Google Scholar]
  5. Barreca C., O'Hare P. 2004; Suppression of herpes simplex virus 1 in MDBK cells via the interferon pathway. J Virol 78:8641–8653 [CrossRef]
    [Google Scholar]
  6. Bielefeldt Ohmann H., Gilchrist J. E., Babiuk L. A. 1984; Effect of recombinant DNA-produced bovine interferon alpha (BoIFN- α 1) on the interaction between bovine alveolar macrophages and bovine herpesvirus type 1. J Gen Virol 65:1487–1495 [CrossRef]
    [Google Scholar]
  7. Bielefeldt Ohmann H., Lawman M. J. P., Babiuk L. A. 1987; Bovine interferon: its biology and application in veterinary medicine. Antiviral Res 7:187–210 [CrossRef]
    [Google Scholar]
  8. Biron C. A., Sen G. C. 2001; Interferons and other cytokines. In Fields Virology , 4th edn. pp  321–349 Edited by Knipe D., Howley P. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  9. Bühler B., Keil G. M., Weiland F., Koszinowski U. H. 1990; Characterization of the murine cytomegalovirus early transcription unit e1 that is induced by immediate-early proteins. J Virol 64:1907–1919
    [Google Scholar]
  10. Büttner K., Bernhardt J., Scharf C. 7 other authors 2001; A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis . Electrophoresis 22:2908–2935 [CrossRef]
    [Google Scholar]
  11. Caraglia M., Marra M., Pelaia G., Maselli R., Caputi M., Marsico S. A., Abbruzzese A. 2005; Alpha-interferon and its effects on signal transduction pathways. J Cell Physiol 202:323–335 [CrossRef]
    [Google Scholar]
  12. Chee A. V., Roizman B. 2004; Herpes simplex virus 1 gene products occlude the interferon signaling pathway at multiple sites. J Virol 78:4185–4196 [CrossRef]
    [Google Scholar]
  13. Chinsangaram J., Piccone M. E., Grubman M. J. 1999; Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. J Virol 73:9891–9898
    [Google Scholar]
  14. Chinsangaram J., Koster M., Grubman M. J. 2001; Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase. J Virol 75:5498–5503 [CrossRef]
    [Google Scholar]
  15. Chinsangaram J., Moraes M. P., Koster M., Grubman M. J. 2003; Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease. J Virol 77:1621–1625 [CrossRef]
    [Google Scholar]
  16. Colamonici O. R., Domanski P., Sweitzer S. M., Larner A., Buller R. M. 1995; Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 270:15974–15978 [CrossRef]
    [Google Scholar]
  17. Didcock L., Young D. F., Goodbourn S., Randall R. E. 1999a; Sendai virus and simian virus 5 block activation of interferon-responsive genes: importance for virus pathogenesis. J Virol 73:3125–3133
    [Google Scholar]
  18. Didcock L., Young D. F., Goodbourn S., Randall R. E. 1999b; The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73:9928–9933
    [Google Scholar]
  19. Dorsch-Häsler K., Keil G. M., Weber F., Jasin M., Schaffner W., Koszinowski U. H. 1985; A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci U S A 82:8325–8329 [CrossRef]
    [Google Scholar]
  20. Fehler F., Herrmann J. M., Saalmüller A., Mettenleiter T. C., Keil G. M. 1992; Glycoprotein IV of bovine herpesvirus 1-expressing cell line complements and rescues a conditionally lethal viral mutant. J Virol 66:831–839
    [Google Scholar]
  21. Geiser V., Zhang Y., Jones C. 2005; Analysis of a bovine herpesvirus 1 recombinant virus that does not express the bICP0 protein. J Gen Virol 86:1987–1996 [CrossRef]
    [Google Scholar]
  22. Goodbourn S., Didcock L., Randall R. E. 2000; Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341–2364
    [Google Scholar]
  23. Haller O., Frese M., Kochs G. 1998; Mx proteins: mediators of innate resistance to RNA viruses. Rev Sci Tech 17:220–230
    [Google Scholar]
  24. Horisberger M. A., de Staritzky K. 1987; A recombinant human interferon-alpha B/D hybrid with a broad host-range. J Gen Virol 68:945–948 [CrossRef]
    [Google Scholar]
  25. Huang Z., Krishnamurthy S., Panda A., Samal S. K. 2003; Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77:8676–8685 [CrossRef]
    [Google Scholar]
  26. Iqbal Ahmed C. M., Johnson H. M. 2003; Interferon gene therapy for the treatment of cancer and viral infections. Drugs Today 39:763–766 [CrossRef]
    [Google Scholar]
  27. Isaacs A., Lindemann J. 1957; Virus interference. I. The interferon.. Proc R Soc Lond B Biol Sci 147:258–267 [CrossRef]
    [Google Scholar]
  28. Jonasch E., Haluska F. G. 2001; Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6:34–55 [CrossRef]
    [Google Scholar]
  29. Keil G. M. 2000; Fusion of the green fluorescent protein to amino acids 1 to 71 of bovine respiratory syncytial virus glycoprotein G directs the hybrid polypeptide as a class II membrane protein into the envelope of recombinant bovine herpesvirus-1. J Gen Virol 81:1051–1055
    [Google Scholar]
  30. Keil G. M., Engelhardt T., Karger A., Enz M. 1996; Bovine herpesvirus 1 Us open reading frame 4 encodes a glycoproteoglycan. J Virol 70:3032–3038
    [Google Scholar]
  31. Keil G. M., Höhle C., Giesow K., König P. 2005; Engineering glycoprotein B of bovine herpesvirus 1 to function as transporter for secreted proteins: a new protein expression approach. J Virol 79:791–799 [CrossRef]
    [Google Scholar]
  32. König P., Giesow K., Keil G. M. 2002; Glycoprotein M of bovine herpesvirus 1 (BHV-1) is nonessential for replication in cell culture and is involved in inhibition of bovine respiratory syncytial virus F protein induced syncytium formation in recombinant BHV-1 infected cells. Vet Microbiol 86:37–49 [CrossRef]
    [Google Scholar]
  33. König P., Beer M., Makoschey B., Teifke J. P., Polster U., Giesow K., Keil G. M. 2003; Recombinant virus-expressed bovine cytokines do not improve efficacy of a bovine herpesvirus 1 marker vaccine strain. Vaccine 22:202–212 [CrossRef]
    [Google Scholar]
  34. Kühnle G., Collins R. A., Scott J. E., Keil G. M. 1996; Bovine interleukins 2 and 4 expressed in recombinant bovine herpesvirus 1 are biologically active secreted glycoproteins. J Gen Virol 77:2231–2240 [CrossRef]
    [Google Scholar]
  35. Kühnle G., Heinze A., Schmitt J., Giesow K., Taylor G., Morrison I., Rijsewijk F. A. M., van Oirschot J. T., Keil G. M. 1998; The class II membrane glycoprotein of bovine respiratory syncytial virus, expressed from a synthetic open reading frame, is incorporated into virions of recombinant bovine herpesvirus 1. J Virol 72:3804–3811
    [Google Scholar]
  36. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  37. Leib D. A., Harrison T. E., Laslo K. M., Machalek M. A., Moorman N. J., Virgin H. W. 1999; Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo . J Exp Med 189:663–672 [CrossRef]
    [Google Scholar]
  38. Lipp M., Brandner G. 1985; Herpes simplex virus gene expression in interferon-treated cells. In The Biology of the Interferon System pp  355–360 Edited by Kirchner H., Schellekens H. Amsterdam: Elsevier;
    [Google Scholar]
  39. Malmgaard L. 2004; Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 24:439–454 [CrossRef]
    [Google Scholar]
  40. Melroe G. T., DeLuca N. A., Knipe D. M. 2004; Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol 78:8411–8420 [CrossRef]
    [Google Scholar]
  41. Mester J. C., Pitha P. M., Glorioso J. C. 1995; Antiviral activity of herpes simplex virus vectors expressing murine alpha 1-interferon. Gene Ther 2:187–196
    [Google Scholar]
  42. Mossman K. L., Saffran H. A., Smiley J. R. 2000; Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 74:2052–2056 [CrossRef]
    [Google Scholar]
  43. Müller-Doblies D., Ackermann M., Metzler A. 2002; In vitro and in vivo detection of Mx gene products in bovine cells following stimulation with alpha/beta interferon and viruses. Clin Diagn Lab Immunol 9:1192–1199
    [Google Scholar]
  44. Neuhoff V., Arold N., Taube D., Ehrhardt W. 1988; Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis 9:255–262 [CrossRef]
    [Google Scholar]
  45. Nicholl M. J., Preston C. M. 1996; Inhibition of herpes simplex virus type 1 immediate-early gene expression by alpha interferon is not VP16 specific. J Virol 70:6336–6339
    [Google Scholar]
  46. Perkins D. N., Pappin D. J., Creasy D. M., Cottrell J. S. 1999; Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567 [CrossRef]
    [Google Scholar]
  47. Raggo C., Fitzpatrick D. R., Babiuk L. A., Liang X. 1996; Expression of bovine interleukin-1 β in a bovine herpesvirus-1 vector: in vitro analysis. Virology 221:78–86 [CrossRef]
    [Google Scholar]
  48. Raggo C., Habermehl M., Babiuk L. A., Griebel P. 2000; The in vivo effects of recombinant bovine herpesvirus-1 expressing bovine interferon- γ . J Gen Virol 81:2665–2673
    [Google Scholar]
  49. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Samuel C. E. 2001; Antiviral actions of interferons. Clin Microbiol Rev 14:778–809 [CrossRef]
    [Google Scholar]
  51. Schlender J., Bossert B., Buchholz U., Conzelmann K.-K. 2000; Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize alpha/beta interferon-induced antiviral response. J Virol 74:8234–8242 [CrossRef]
    [Google Scholar]
  52. Schmitt J., Becher P., Thiel H.-J., Keil G. M. 1999; Expression of bovine viral diarrhoea virus glycoprotein E2 by bovine herpesvirus-1 from a synthetic ORF and incorporation of E2 into recombinant virions. J Gen Virol 80:2839–2848
    [Google Scholar]
  53. Sellers R. F. 1963; Multiplication, interferon production and sensitivity of virulent and attenuated strains of the virus of foot-and-mouth disease. Nature 198:1228–1229 [CrossRef]
    [Google Scholar]
  54. Spann K. M., Tran K.-C., Chi B., Rabin R. L., Collins P. L. 2004; Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages. J Virol 78:4363–4369 [CrossRef]
    [Google Scholar]
  55. Stark G. R., Kerr I. M., Williams B. R. G., Silverman R. H., Schreiber R. D. 1998; How cells respond to interferons. Annu Rev Biochem 67:227–264 [CrossRef]
    [Google Scholar]
  56. Strong R., Belsham G. J. 2004; Sequential modification of translation initiation factor eIF4GI by two different foot-and-mouth disease virus proteases within infected baby hamster kidney cells: identification of the 3Cpro cleavage site. J Gen Virol 85:2953–2962 [CrossRef]
    [Google Scholar]
  57. Symons J. A., Alcami A., Smith G. L. 1995; Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560 [CrossRef]
    [Google Scholar]
  58. Valarcher J.-F., Furze J., Wyld S., Cook R., Conzelmann K.-K., Taylor G. 2003; Role of alpha/beta interferons in the attenuation and immunogenicity of recombinant bovine respiratory syncytial viruses lacking NS proteins. J Virol 77:8426–8439 [CrossRef]
    [Google Scholar]
  59. Velan B., Cohen S., Grosfeld H., Leitner M., Shafferman A. 1985; Bovine interferon alpha genes. Structure and expression. J Biol Chem 260:5498–5504
    [Google Scholar]
  60. Weir J. P., Elkins K. L. 1993; Replication-incompetent herpesvirus vector delivery of an interferon α gene inhibits human immunodeficiency virus replication in human monocytes. Proc Natl Acad Sci U S A 90:9140–9144 [CrossRef]
    [Google Scholar]
  61. Wu Q., Brum M. C., Caron L., Koster M., Grubman M. J. 2003; Adenovirus-mediated type I interferon expression delays and reduces disease signs in cattle challenged with foot-and-mouth disease virus. J Interferon Cytokine Res 23:359–368 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.81094-0
Loading
/content/journal/jgv/10.1099/vir.0.81094-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error